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Improving Low-Resource Machine Translation

through Syntactic and Contextual Information™

Akiva Miura

Abstract

Translation is an essential tool to communicate with foreign language speakers.
However, it requires specialized knowledge, and thus expectations are heightening
toward machine translation (MT), which has potential to perform manual trans-
lation tasks in an automated fashion. Nowadays many practical applications of
MT translate from English into other widely spoken languages and vice versa.
On the other hand, MT quality has not yet reached a practical level in many
language pairs that do not include English.

The current mainstream MT frameworks are statistical MT and neural MT,
which are characterized by the ability to learn to translate automatically through
machine learning techniques. It has been observed that translation with models
trained on larger parallel corpora can achieve higher accuracy, and usually mil-
lions of sentence pairs are required in order to produce a high quality translation.
Unfortunately, readily available parallel corpora are limited for most language
pairs, particularly those that do not include English, having few sentence pairs,
or none at all. Moreover, the cost of manually producing a high quality parallel
corpus is estimated to be in the millions of dollars.

In this thesis, we focus on improving MT quality with two types of approaches
for coping with the scarceness of bilingual corpora (1) pivot translation and (2)
active learning for MT.

Pivot translation is a useful method for translating between languages with
little or no parallel data by utilizing parallel data in an intermediate (pivot) lan-

guage such as English. Although various methods using pivot languages have
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been proposed, ambiguity due to expressions in the pivot language often causes
incorrect selection of translation rules and harms translation quality. Therefore,
pivot-side disambiguation is a key issue in pivot translation. In the first part of
the thesis, we propose two new pivot translation methods to solve the two types of
ambiguity respectively. The first method is proposed to solve semantic ambiguity,
and lets MT models remember the information of the pivot phrase. This informa-
tion can help to select appropriate translation rules considering pivot-side context
with pivot language models. The second method is proposed to solve syntactic
ambiguity, and introduces an explicitly syntax-aware matching condition to find
correct correspondence of source-pivot and pivot-target translation rules, and can
produce more reliable models. Experimental results on multilingual translation
show a significant improvement in all the tested language pairs.

Active learning is a framework that makes it possible to efficiently train statisti-
cal models by selecting informative examples from a pool of unlabeled data. Pre-
vious work has found this framework effective for MT, making it possible to train
better MT models with less effort, particularly when annotators translate short
phrases instead of full sentences. However, previous methods for phrase-based
active learning for MT fail to consider whether the selected units are coherent
and easy for human translators, and also have problems with selecting redun-
dant phrases with similar content. In this part, we propose two new methods
for selecting more syntactically coherent and less redundant segments in active
learning for MT. Experiments using both simulation and extensive manual trans-
lation by professional translators find the proposed method effective, achieving
both greater gain of translation score for the same number of translated words,
and allowing translators to be more confident in their translations.

Our experiments demonstrate that M'T quality can significantly benefit from

syntactic and contextual information when faced with limited training data.
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1 Introduction

1.1 Background

Language is a key communication tool for human beings, and also signifying
group identity deeply rooted in social and cultural background. Translation is
an essential tool to communicate with foreign language speakers. However, it
requires specialized knowledge, and thus expectations are heightening toward
machine translation (MT), which has potential to perform translation tasks in an
automated fashion. Nowadays many practical applications of MT translate from
English into other widely spoken languages and vice versa. On the other hand,
MT quality has not yet reached a practical level in many language pairs that do
not include English. Therefore, it is hard to say that users who are not familiar

with English can use MT between various languages without difficulty.

1.2 Known Issues in Multilingual Machine

Translation

The most traditional framework of MT is Rule-Based Machine Translation (RBMT
(Nirenburg, 1989)), which is implemented by manual description of translation
rules. This requires knowledge of experts familiar with both of the source and
target languages, and thus it is difficult to cover a wide variety of expressions in
many language pairs. Therefore, this thesis discusses the framework of Statis-
tical Machine Translation (SMT (Brown et al., 1993)), which can automatically
obtain translation rules from given bilingual corpora (also referred to as “paral-
lel corpora”), consisting of a set of sentences in two languages, through machine
learning. It has been observed that translation with models trained on larger par-

allel corpora can achieve higher accuracy, and usually millions of sentence pairs



are required in order to produce a high quality translation system (Dyer et al.,
2008; Koehn et al., 2007). Such large bilingual corpora can be obtained for a
few language pairs through the on-going translation efforts of organizations such
as the Canadian parliament (English-French), the United Nations (6 official lan-
guages, including Arabic and Chinese), and the European Parliament (spanning
21 European languages).

Unfortunately, readily available parallel corpora are limited for most other
language pairs, particularly those that do not include English, having fewer than
100k sentence pairs, or none at all. Moreover, the cost of manually producing
a high quality parallel corpus is estimated to be in the millions of dollars. For
example, Germann (2001) estimated the cost of hiring professional translators to
create a Tamil-English corpus at $0.36 per word, or in other words, $1.44M for
200k sentences with a 20 words per sentence average.

Indeed, this scarcity of parallel corpora makes it difficult to construct rea-
sonably performing MT systems for most language pairs, a problem which has
therefore received attention by both researchers and industries and is referred to
as “low-resource machine translation” (Irvine and Callison-Burch, 2013; Lopez
and Post, 2013). Advances in this field could facilitate communication across
cultures, enable faster commercial expansion to new growing markets, and may

even assist during disaster relief operations (Munro, 2013).

1.3 Approaches toward Low-Resource Machine

Translation

As mentioned above, it is not practical to create a bilingual corpus in a straight-
forward manner from the viewpoint of budget and time cost. There are two

possible approaches to MT between low-resource language pairs.

Effective use of indirectly available data: One approach is an indirect
method reusing existing data to realize translation in the intended language
pairs even if no direct source-target parallel corpus is available. An effective
and representative method of this approach is to introduce a pivot language for

which parallel data with the source and target languages exists (pivot translation)



(de Gispert and Marino, 2006).

For example, since there is almost no large Japanese-French bilingual corpus
(e.g. of more than 1M sentence pairs), it is difficult to directly train MT models.
However, there are many large-scale and well-maintained corpora available for
Japanese-English and English-French respectively. In many cases, each of the
widely spoken languages other than English, like Japanese and French in this
example, has a sufficiently large bilingual corpus with English. Therefore MT
between these languages via English as a pivot is possible and becomes a realistic
solution.

Although various methods using pivot languages have been proposed (Cohn
and Lapata, 2007; Utiyama and Isahara, 2007), ambiguity due to expressions in
the pivot language often causes incorrect selection of translation rules and harms
translation quality. Therefore, pivot-side disambiguation is a key issue in pivot

translation.

Efficient construction of bilingual corpus: While in specific cases large cor-
pora can be collected, for example by crawling the web (Resnik and Smith, 2003),
in many domains or language pairs it is still necessarily to create data by hand, ei-
ther by hiring professionals or crowdsourcing (Zaidan and Callison-Burch, 2011).
In theses cases, active learning, which selects which data to annotate based on
their potential benefit to the translation system, has been shown to be effective
to improving SMT systems while keeping the required amount of annotation to
a minimum (Ananthakrishnan et al., 2010a; Kck et al., 2005; Gonzalez-Rubio

et. al., 2012; Green et al., 2014; Haffari and Sarkar, 2009; Haffari et al., 2009;

Turchi et al.; 2008).

Most work on active learning for SMT assigns priority to sentences or sub-
sentences that contain data that is potentially useful to the MT system accord-
ing to a number of criteria. Sub-sentential annotation methods can remove many
redundant segments duplicated in sentences to be selected in full-sentential anno-
tation and reduce annotation workload theoretically. However, selected segments
are not always easy to translate for humans, causing actual results to be far from
the optimal. For example, fragments of complex phrases that have only incom-

plete syntactic information may harm the annotation quality. Therefore, it will



be necessary to consider methods that are truly efficient for human annotators.

1.4 Thesis Scope

The research purpose of this thesis is to improve multilingual SMT, specifically
between low-resource language pairs, resolving the known problems of previously
proposed methods in pivot translation and active learning for SMT. This thesis
addresses the problems to disambiguate in pivot translation through pivot-side
contextual and syntactic information, and to provide more efficient and human-
friendly active learning method emphasizing new criteria of non-redundancy and

syntactic coherence.

1.4.1 Better Pivot Translation by Remembering the Pivot

Among various methods using pivot languages, the triangulation method (Cohn
and Lapata, 2007; Utiyama and lsahara, 2007), which translates by combining
source-pivot and pivot-target translation models into a source-target model, has
been shown to be one of the most effective approaches. However, word sense
ambiguity and interlingual differences of word usage cause difficulty in accurately
learning correspondences between source and target phrases.

Figure 1.1 (a) shows an example of three words in German and Italian that
each correspond to the English polysemic word “approach.” In such a case, find-
ing associated source-target phrase pairs and estimating translation probabilities
properly becomes a complicated problem. Furthermore, in the conventional trian-
gulation method, information about pivot phrases that behave as bridges between
source and target phrases is lost after learning phrase pairs, as shown in Figure
1.1 (b).

To overcome these problems, we propose a novel triangulation method that re-
members the pivot phrase connecting source and target in the records of phrase/rule
table, and estimates a joint translation probability from the source to target and
pivot simultaneously. We show an example in Figure 1.1 (c). The advantage
of this approach is that generally we can obtain rich monolingual resources in
pivot languages such as English, and SMT can utilize this pivot-side contextual

information to improve the translation quality.



Anniherung approach approccio
Ansatz apprommato§ accesso
Zufahrt entrance ravvicinamento

a) Triangulation (De-En-It)

Anngherung ————————> approccio
(via: approach)
Annsherung —> acCcesso
(via: approach)
Annzherung —o——————5 ravvicinamento
(via: approach, approximation)
Ansatz ———————————> approccio
(via: approach)

(b) Traditional Triangulated Phrases

Annsherung ——>  (approccio, approach)
Annsherung —>  (ravvicinamento, approach)

Annsherung ——>  (ravvicinamento, approximation)

Ansatz ——> <(approccio, approach)

(¢) Proposed Triangulated Phrases

Figure 1.1: An example of (a) triangulation and the resulting phrases in the (b)
traditional method of forgetting pivots and (c) our proposed method

of remembering pivots.

To utilize information about the pivot language at translation time, we train
a Multi-Synchronous Context-free Grammar (MSCFG) (Neubig et al., 2015), a
generalized extension of Synchronous CFGs (SCFGs) (Chiang, 2007), that can
generate strings in multiple languages at the same time. To create the MSCFG,
we triangulate source-pivot and pivot-target SCFG rule tables not into a single
source-target SCFG, but into a source-target-pivot MSCFG rule table that re-
members the pivot. During decoding, we use language models (LMs) over both

the target and the pivot to assess the naturalness of the derivation.



[X1] enregistrer [X2] [X1] iE3% [X2]
[X1] record [X2]
[X1] dossier [X2] [X2] [X1] iE%x

(a) Standard triangulation method matching phrases

VP

[X1] enregistrer [X2] /VP\ [X1] 2% [X2]

TO VB NP
| | |
[X1] record [X2]

NP
[X1] dossier [X2] PN [X2] [X1] i2%

DT NN NP
| | |
[X1] record [X2]

(b) Proposed triangulation method matching subtrees

Figure 1.2: Example of disambiguation by parse subtree matching (Fr-En-Zh),

[X1] and [X2] are non-terminals for sub-phrases.

1.4.2 Syntactic Matching Methods in Pivot Translation

In the triangulation method, source-pivot and pivot-target phrase pairs are con-
nected as a source-target phrase pair when a common pivot-side phrase exists.
In Figure 1.2 (a), we show an example of standard triangulation on Hiero (Chi-
ang, 2007) translation models that combines hierarchical rules of phrase pairs by
matching pivot phrases with equivalent surface forms. This example also demon-
strates problems of ambiguity: the English word “record” can correspond to
several different parts-of-speech according to the context. More broadly, phrases
including this word also have different possible grammatical structures, but it
is impossible to uniquely identify this structure unless information about the
surrounding context is given.

This varying syntactic structure will affect translation. For example, the French
verb “enregistrer” corresponds to the English verb “record”; but the French noun
“dossier” also corresponds to “record” — as a noun. As a more extreme example,
Chinese is a languages that does not have inflections according to the part-of-

speech of the word. As a result, even in the contexts where “record” is used



with different parts-of-speech, the Chinese word “I23%” will be used, although
the word order will change. These facts might result in an incorrect connection of
“[X1] enregistrer [X2]” and “[X2] [X1] 123%” even though proper correspondence
of “[X1] enregistrer [X2]” and “[X1] dossier [X2]” would be “[X1] I23R [X2]” and
“[X2] [X1] IE3R". Hence a superficial phrase matching method based solely on
the surface form of the pivot will often combine incorrect phrase pairs, causing
translation errors if their translation scores are estimated to be higher than the
proper correspondences.

Given this background, we hypothesize that disambiguation of these cases
would be easier if the necessary syntactic information such as phrase structures
are considered during pivoting. To incorporate this intuition into our models,
we propose a method that considers syntactic information of the pivot phrase,
as shown in Figure 1.2 (b). In this way, the model will distinguish translation
rules extracted in contexts in which the English symbol string “[X1] record [X2]”
behaves as a verbal phrase, from contexts in which the same string acts as noun

phrase.

1.4.3 Syntactic and Non-Redundant Segment Selection

for Active Learning

Most work on active learning for SMT, and natural language tasks in general,
has focused on choosing which sentences to give to annotators. These methods
generally assign priority to sentences that contain data that is potentially useful to
the MT system according to a number of criteria. For example, there are methods
to select sentences that contain phrases that are frequent in monolingual data but
not in bilingual data (KEck et al., 2005), have low confidence according to the MT
system (Haftari et al., 2009), or are predicted to be poor translations by an MT
quality estimation system (Ananthakrishnan et al., 2010a). However, while the
selected sentences may contain useful phrases, they will also generally contain
many already covered phrases that nonetheless cost time and money to translate.

To solve the problem of wastefulness in full-sentence annotation for active learn-
ing, there have been a number of methods proposed to perform sub-sentential

annotation of short phrases for natural language tasks (Bloodgood and Callison-
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Burch, 2010; Settles and Craven, 2008; Sperber et al., 2014; Tomanek and Hahn,
2009). For MT in particular, Bloodgood and Callison-Burch (2010) have proposed
a method that selects poorly covered n-grams to show to translators, allowing
them to focus directly on poorly covered parts without including unnecessary
words. Nevertheless, our experiments identified two major practical problems
with this method. First, as shown in Figure 1.3 (a), many of the selected phrases
overlap with each other, causing translation of redundant phrases, damaging effi-
ciency. Second, it is common to see fragments of complex phrases such as “one of
the preceding,” which may be difficult for workers to translate into a contiguous
phrase in the target language.

In this work, we propose two methods that aim to solve these two problems and
improve the efficiency and reliability of segment-based active learning for SMT.
For the problem of overlapping phrases, we note that by merging overlapping
phrases, as shown in Figure 1.3 (b), we can reduce the number of redundant
words annotated and improve training efficiency. We adopt the idea of mazimal

substrings (Okanohara and 'I'sujii, 2009; Yamamoto and Church, 2001) which



both encode this idea of redundancy, and can be calculated to arbitrary length
in linear time using enhanced suffix arrays. For the problem of phrase structure
fragmentation, we propose a simple heuristic to count only well-formed syntactic

constituents in a parse tree, as shown in Figure 1.3 (c).

1.5 Document Structure
This thesis contains the following chapters:

e In Chapter 2, the four representative frameworks of MT in historical order
are introduced. Then, the detailed mechanism of SMT is explained, and also

a basic summary of MT framework based on Neural Networks is provided.

e In Chapter 3, conventional methods in pivot translation and active learn-
ing for SMT are described. Specifically their own problems and potential

methods to solve them are discussed.

e In Chapter 4, a proposed method in pivot translation to resolve pivot-side
contertual ambiguity is presented. This proposed method lets MT models
remember the information of the pivot phrase. This information can help
to select appropriate translation rules considering pivot-side context with
pivot language models. This chapter is based on an ACL’2015 paper (Miura
et al., 2015).

e In Chapter 5, a proposed method in pivot translation to resolve the pivot-
side syntactic ambiguity is presented. This proposed method introduces an
explicitly syntax-aware matching condition to find correct correspondence
of source-pivot and pivot-target translation rules, and can produce more
reliable models. This chapter is based on a WMT 2017 paper (Miura et al.
2017).

e In Chapter 6, a proposed method in active learning for SMT to introduce
new criteria of segment selection, based on non-redundancy and syntac-
tic coherence. This proposed method provides more compact and human-

friendly annotation task than conventional methods, resulting in a higher



quality parallel corpus with lower annotation cost. This chapter is based
on an NAACL’2016 paper (Miura et al.; 2016).

e In Chapter 7, summary and contributions of this thesis are described, and

directions for future work are discussed.
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2 Machine Translation

Frameworks

Machine Translation (MT) is a computer-aided technology converting sentences
of a certain language into sentences of different languages. To realize MT, var-
ious frameworks have been proposed in history, and as representative there are
Rule-Based Machine Translation (RBMT (Nirenburg, 1989)"), Example-Based
Machine Translation (EBMT (Nagao, 1984))” Statistical Machine Translation
(SMT (Brown et al., 1993)) and Neural Machine Translation (NMT (Bahdanan
et al., 2015; Sutskever ef. al., 2014)).

Since translation rules are manually described in RBMT, it has an advantage
that translation results can be controlled based on linguistically motivated gram-
mar rules. On the other hand, knowledge of experts familiar with both of source
and target languages is required for each language pair, it is necessary to de-
scribe a huge and complicated variety of rules, and it is difficult to cover a variety
of language expressions. In the other three frameworks, there are many com-
mon points, such as automatically acquiring translation rules based on bilingual
corpora.

In EBMT, a target language sentence is generated by combining examples
having a high degree of similarity with respect to an input sentence based on
the example database of parallel sentences. This framework is known to exhibit
extremely high performance when the bilingual corpus used for examples and
the field of the sentence to be translated conform to each other. However, it is
necessary to consider complicated combination problems, statistical models are

not assumed for scoring at the time of selecting examples, and thus lack versatility.

'RBMT is referred also as “Knowledge-Based Machine Translation (KBMT).”
2EBMT is referred also as “Machine Translation by Principal Analogy.”
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SMT, which is discussed centrally in this thesis, automatically acquires corre-
spondence relationships of words and phrases from bilingual corpora as transla-
tion rules, gives probabilistic scores to each rule. Then, for each input sentence, it
searches for an output sentence that maximizes the translation probability score
for given input sentence. Depending on the translation rules to be used, there is a
more detailed classification of the SMT frameworks, and these are introduced in
Sections 2.1.3-2.1.7. Generally the versatility of frameworks based on statistical
models is high, and generalized log-linear models can be used for efficient search
and optimization (Och, 2003). Since it has become possible to operate large-scale
computing resources and rich language resources in recent years, SMT research
and development is spurred and many of MT systems that adopt SMT.

Research on NMT, which implements MT using neural networks (NNs), also
tends to increase in recent years, and various methods have been devised. In
some cases, NNs are used to strengthen SMT models, whereas there are many
methods to train translation models directly from parallel corpora. It has many
attractive advantages that are difficult with ordinary SMT, such as training of
long distance dependencies, joint optimization of multiple models, etc. However,
problems remain in practical application, including the fact that advanced paral-
lel computing environments are indispensable, and interpretation and control of
trained models is difficult.

Although each framework has advantages and disadvantages, this thesis fo-
cuses on SMT, and only some experiments have comparison and verification with
NMT. As the reason for using SMT in this study, specifically since automatically
acquired translation rules are scored based on statistical model, it is possible to
explicitly give meanings when synthesizing models, and therefore, SMT is more
easily integrated with pivot translation and active learning. It has also reported
that NMT can not exert much performance and is inferior in accuracy of SMT
when bilingual corpus used for training is not sufficient. Therefore, SMT should
be more suitable for low-resource scenarios.

The following sections describe about detailed mechanism of SMT (Section 2.1)

and explain briefly about the representative mechanisms of NMT (Section 2.2).
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2.1 Statistical Machine Translation

The basic idea of SMT is based on a noisy channel model (Shannon, 1948). For
given sentence f in source language, let £(f) be a set of all the possible translated
sentences in target language. Assume that Pr(e|f), translation probability from
f to e, can be computed for any sentence e in target language. SMT searches for
the é € £(f) that maximizes Pr(e|f), having maximal translation probability

in target language.'

é = arg max Pr(e|f) (2.1)
ec&(f)
e m XPr(f|e)P7’(e)
- N P (22)
= arg max Pr(f|e)P(e) (2.3)

ec&(f)

However, since it is difficult to implement this actual model accurately, it is
common to reformulate as a weight optimization problem based on the following
log-linear model (Och, 2003).

é = arg max Pr(el|f) (2.4)
ec&(f)
exp (wTh(f, e) 25)
A arg max .
egeé’(f) > exp (wrh(f,e))
= arg maxw h(f,e) (2.6)

ec&(f)

where h is a feature vector, with feature values such as logarithmic probability
scores of translation models (Section 2.1.1) and language models (Section 2.1.2),
word reordering score accompanying derivation, and various penalties. The exact
number and type of features varies from framework to framework. w is a vector
of parameters, having the same dimension number with h, that weights each
element of the feature vector. To adjust each element of w to be optimum, it

is necessary to use development data (referred also as tuning data) obtained by

1Such a process that searches for the optimal translation candidate maximizing the translation
probability is referred as decoding.
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separating a bilingual corpus from training data and testing data, and automatic
evaluation measure that computers the similarity score of translation result with
the reference sentence in target language. Then the optimizer finds parameters
such that the evaluation score such as BLEU (Papineni et al., 2002) is maximized

for the input sentences (Och, 2003). The various SMT frameworks described

features.

2.1.1 Translation Models

Translation model (TM) Pr(f|e) is a statistical model for prescribing the likeli-
hood of a translation, and trained from bilingual corpus. Translation models do
not directly associate e and f, and assume that f is generated from f through
some steps, referred as derivation d. In statistical models, the derivation is treated
as latent variables, and Equation 2.3 is rewritten according to the following equa-

tions:

é = arg max Pr(fle)Pr(e)
ecé(f)

= argmax Y Pr(f,dle)Pr(e) (2.7)
ecf(f) deD(f.e)

where D(f, e) is the set of derivations given f and e.

The IBM model is known as a specific example of derivation, that associates
f and e by word correspondence between the language pair, and maximizes the
translation probability (Brown et al., 1993). In IBM models, Pr(fl|e) is defined
as a statistical model that generates f from e on word by word through word

alignment a.
Pr(fle)=>_Pr(f.ale) (2.8)

Training word alignment is regarded as a problem of finding the a that maximizes

the conditional probability of translation model.

a = arg max Pr(f,ale) (2.9)
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Word alignment is expressed as a set of position pairs (j,i) representing word

correspondence (f;, e;) in sentence pair (f,e).

a:{"'a(jai)v"'} (2'10)

Such word-oriented translation is valid for pairs of languages that are similar
enough to make sense only by replacing words. However, it is insufficient since
there are many cases where words do not correspond one-to-one in reality and
it is difficult to consider word order. Phrase-Based Machine Translation (PBMT
(Koehn et al.; 2003)) dramatically improved translation accuracy than word-
based SMT, using correspondence of consecutive word strings extracted from
the trained word alignment. However, translation is difficult for language pairs
with significantly different word orders due to complicated reordering problems in
PBMT, then SMT frameworks based on tree structure has been also proposed to
deal with such advanced reordering problems. Sections 2.1.3-2.1.7 describe these

frameworks in detail.

2.1.2 Language Models

Language model (LM) Pr(e) is used to evaluate how natural and fluent the
word sequence of a given sentence is in the target language. A good language
model accurately gives high probability to natural sentences and low probability
to unnatural sentences as well. By referring to this information in the transla-
tion process, SMT can select more natural sentences from translation candidates,
leading to more fluent translation results. This subsection describes the n-gram
language models widely used in SMT.
First, assume that the naturalness of target language e sentence can be com-
puted by probability chain as follows:
I+1
P(ef) = I Puceileg™) (2.11)

i=1

where [ is the length of e and assume that e = el = ¢;---e;. ¢y = (s) repre-

sents the start-of-sentence symbol and e;; = (/s) represents the end-of-sentence
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symbol. Each conditional probability can be obtained using maximum likelihood

estimation as follows:

Ctrain (66 )

Pyp(eilef ™) = /00
o Ctruin(ea 1)

(2.12)
where ¢;rqin represents the occurrence count of the word string in the training
data.

However, this definition gives probability 0 to a sentence which does not ap-
pear in the training data, and can not determine the superiority or inferiority of
naturalness evaluation for many translation candidates that are evaluated with
score 0. Therefore, to calculate the conditional probability of e;, it is better to
use the conditional probability that considers only the €/~ ., immediately pre-
ceding n — 1 words, not e !, all the word string before e;. According to this idea,

Equation 2.11 is rewritten as following:

I+1

P(e)) =~ [[ Purlelei=n ) (2.13)
=1

The n-gram language models trained in this manner, can give probability scores
to sentences that do not exist in training data as well. However, even in this
equation, there still remains the problem of estimating probability 0 for sen-
tences containing n-gram that do not appears in training data. To solve this
problem, there are smoothing methods that estimate the probability score by
combining the conditional probabilities P(e;|ei”}. ) of n-gram and P(e;lel”} )
of (n—1)-gram. Various methods have been proposed for smoothing, and the rep-
resentative methods are linear interpolation and the Kneser-Ney method (Chen
and Goodman, 1996).

2.1.3 Phrase-Based SMT

PBMT is the most representative method in SMT. The training process of PBMT
translation models first trains the word alignment from bilingual corpus, extracts

phrase pairs based on the trained word alignment, and scores each phrase pair.
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Figure 2.1: En-Ja word alignment Figure 2.2: En-Ja phrase extraction

Figure 2.1 shows an example of English-Japanese word alignment obtained
from bilingual corpus by the method described in Section 2.1.1.” Figure 2.2 shows
an example of phrase extraction by finding correspondence of phrases from the
obtained word-alignment. As shown in the figure, the lengths of extracted phrases
are not uniquely determined, and multiple phrase pairs with different lengths are
extracted according to the word alignment. However, the extracted phrase pairs
impose a constraint that there is no word alignment that traverses inside and
outside the two corresponding phrases, and the maximum phrase length also
should be limited. PBMT translation models are trained by counting occurrence
count of phrases and co-occurrence count of phrase pairs based on all the listed
phrase pairs extracted in this manner.

Unlike the word-based translation models, the phrase-based translation mod-
els use the extracted phrases as the basic units of translation, thereby efficiently
training translation rules of consecutive word strings such as idioms, achieving
higher quality of translation. Depending on how phrases are delimited, there
are multiple candidates for derivations that derivations that result in a given
sentence to be translated into the target language. Then the translation proba-
bility is finally estimated considering the probability scores and reordering scores
of the phrase pairs used in each step of derivation. PBMT follows the log-linear
model of the Equation 2.6 to search for the translation candidate with the highest
translation probability score, and the feature functions include both directions of
phrase translation probability, both directions of lexical translation probability,
word penalty, phrase penalty, and language model score.

PBMT is used in many research and practical systems because it can easily

train and perform high-speed translation just by preparing a bilingual corpus

2In languages such as Japanese, Chinese, and Thai where words are not separated by spaces in
ordinary texts, first it is necessary to perform tokenization using word segmentation tools.
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between language pairs to be translated. However, since it is a method not
considering the structure of sentences, it is difficult to effectively address the
problem of word reordering. Although it is possible to introduce advanced word
reordering models (Galley et al., 2004; Goto et al., 2013), reordering over long

distances is still difficult and it is not easy to use in pivot translation.

2.1.4 Synchronous Context-Free Grammars

This section first covers Synchronous Context-Free Grammars (SCFGs), which
are widely used in machine translation, particularly hierarchical phrase-based
SMT (Hiero) (Chiang, 2007). In SCFGs, the elementary structures used in trans-
lation are synchronous rewrite rules with aligned pairs of source and target sym-
bols on the right-hand side:

X = (5, 1) (2.14)

where X is the head symbol of the rewrite rule, and 3 and ¢ are both strings
of terminals and non-terminals on the source and target side respectively. Each
string in the right side pair has the same number of indexed non-terminals, and
identically indexed non-terminals correspond to each-other. For example, a syn-

chronous rule could take the form of:
X = (Xo of X1, X1 B9 Xo). (2.15)

Synchronous rules can be extracted based on parallel sentences and automati-
cally obtained word alignments, similarly to PBMT. Each extracted rule is scored
with phrase translation probabilities in both directions ¢(5|t) and ¢(Z|5), lexical
translation probabilities in both directions ¢y, (5|t) and ¢, (£|35), a word penalty
counting the terminals in ¢, and a constant phrase penalty of 1.

At translation time, the decoder searches for the target sentence that maxi-
mizes the derivation probability, which is defined as the sum of the scores of the
rules used in the derivation, and the log of the language model probability over
the target strings. When not considering a language model, it is possible to effi-

ciently find the best translation for an input sentence using the CKY+ algorithm
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(Chappelier et al., 1998). When using a language model, the expanded search
space is further reduced based on a limit on expanded edges, or total states per

span, through a procedure such as cube pruning (Chiang, 2007).

2.1.5 Hierarchical Rules

In this section, we specifically cover the rules used in Hiero. Hierarchical rules
are composed of initial head symbol S, and synchronous rules containing termi-
nals and single kind of non-terminal X.* Hierarchical rules are extracted using
the same phrase extraction procedure used in phrase-based translation (Koehn
et al., 2003) based on word alignments, followed by a step that performs recursive
extraction of hierarchical phrases (Chiang, 2007).

For example, hierarchical rules could take the form of:

X — <Ofﬁcers, FEH ﬁ§\> (2.16)
X — <the Committee, %E%» (2.17)
X = (X of X1, X1 8 Xo). (2.18)

From these rules, we can translate the input sentence by derivation:

S (Xo, Xo)

(X1 of X, X5 B9 Xy)

<Ofﬁcers of Xy, X, EEH }ﬁ§i>
(Officers of the Committee,

52 19 THE MA).

U

Hiero has an advantage that it is able to achieve relatively high word re-ordering
accuracy (compared to other symbolic SMT alternatives such as standard PBMT)
without language-dependent processing. On the other hand, since it does not use
syntactic information and tries to extract all possible combinations of rules, it
has the tendency to extract very large translation rule tables and also tends to

be less syntactically faithful in its derivations.

3It is also standard to include glue rules S — (Xo, Xo), S — (So X1, So X1), S —
(So X7, X3 Sp) to fall back on when standard rules can not result in a proper derivation.
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2.1.6 Explicitly Syntactic Rules

An alternative to Hiero rules is the use of synchronous context-free grammar
or synchronous tree-substitution grammar (Graehl and Knight, 2004) rules that
explicitly take into account the syntax of the source side (tree-to-string rules),
target side (string-to-tree rules), or both (tree-to-tree rules). Taking the example
of tree-to-string (T2S) rules, these use parse trees on the source language side,
and the head symbols of the synchronous rules are not limited to S or X, but
instead use non-terminal symbols corresponding to the phrase structure tags of
a given parse tree. For example, T2S rules could take the form of:

Xnp — ((NP (NNS Officers)), EEH] ﬁ§>

( (2.19)
Xnp — {(NP (DT the) (NNP Committee)), ZRE) (2.20)
XPP — <(P IN Of XNP O) Xo E)\]>, (2.21)
Xnp — (NP Xxpg Xpp1), X1 X)) (2.22)

Here, parse subtrees of the source language rules are given in the form of S-
expressions. From these rules, we can translate from the parse tree of the input

sentence by derivation:

XrooT — (Xxpo Xo)
= ((NP Xyp Xpp2), Xz X1)
(¢

= ((NP (NP (NNS Officers) Xpp o)), X, EFEE ME)
(NP

. (NP (NNS Officers)) - .

A (PP (IN of) B W EER RE

(NP (DT ‘the)
(NNP Committee))))

In this way, it is possible in T2S translation to obtain a result conforming to the
source language’s grammar. This method also has the advantage the number of
less-useful synchronous rules extracted by syntax-agnostic methods such as Hiero
are reduced, making it possible to train more compact rule tables and allowing

for faster translation.
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2.1.7 Multi-Synchronous Context-Free Grammars

Multi-Synchronous Context-Free Grammars (MSCFGs (Neubig et al., 2015)) are
a generalization of SCFGs that are be able to generate sentences in multiple target
languages simultaneously. The single target side string ¢ in the SCFG production

rule is extended to have strings for N target languages:
X — (G, by, o, In) (2.23)

Performing multi-target translation with MSCFGs is quite similar to translat-
ing using standard SCFGs, with the exception of the expanded state space caused
by having one language model for each target. Neubig et al. (2015) has proposed
a sequential search method, that ensures diversity in the primary target search
space by first expanding with only primary target language model, then addi-
tionally expands the states for other language models, a strategy we also adopt
in this work.

In the standard training method for MSCFGs, the multi-target rewrite rules
are extracted from multilingual sentence-aligned corpora by applying an extended
version of the standard SCFG rule extraction method, and scored with features
that consider the multiple targets. It should be noted that this training method
requires a large amount of sentence-aligned training data including the source
and all target languages. This assumption breaks down when we have little
parallel data, and thereby we propose a method to generate MSCFG rules by
triangulating 2 SCFG rule tables in Chapter 4.

2.2 Neural Machine Translation

As shown previously, the training of SMT is carried out through various steps, and
it is necessary to prepare independent translation knowledge such as phrase/rule
table and language model, and design features to be considered at translation.
On the other hand, in NMT, training and translation can all be done in the same
framework by preparing only a single NN. Just by providing bilingual sentence

pairs, NNs automatically learn some information necessary for translation. Such a
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framework in which input to output is completed in a single model is called end-to-
end. In this section, we introduce the commonly used elements in NMT: encoder-
decoder model (Sutskever et al., 2014) and attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015).

NMT is largely divided into three parts. The first is an encoder that encodes
an input sentence into a vector representation of continuous values. The second is
an attention mechanism that controls where in the encoded input sentence should
be noticed when determining the word to be output. The third is a decoder that
decodes (generates) the output sentence based on the encoded input sentence and
the attention information. A schematic diagram of NMT composed of these three
parts is shown in Figure 2.3. In general, a model consisting of an encoder that
encodes input information and a decoder that decodes the encoded information
and obtains a desired output is called an encoder-decoder model. This model
is applied in various tasks such as document summarization and image caption

generation. Each element will be explained in the following subsections.

2.2.1 Encoder

The encoder first coverts each language into a vector of continuous values con-
sisting hundreds of dimensions called distributed representation. This operation
is called embedding (Mikolov et al., 2013). Although such distributed represen-
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tation can be trained from a large-scale monolingual corpus independent from
NMT, training of distributed representation is also commonly trained simultane-
ously as part of the network in NMT.

In embedding, the information of each word is represented independently of
each other. Therefore, words whose meanings are determined by association with
other words, such as function words and compound nouns, can not be represented
well. To deal with this problem, the recurrent NN (RNN) layer reads each word
one by one, and creates a vector representation that considers words before or
after.

A basic NN only transmit information in one direction and do not have the
function of using past information or storing information, though a RNN has a
mechanism to feed back its own output as its input again. The hidden states of

the forward RNN are computed as:
hi = f (Ei—l, 8) (2.24)

where f is the RNN computation, EZ is the hidden states of the forward RNN in
time step ¢, and s is the source sentence representation. This mechanism makes it
possible to use past information and current information at the same time. Since
only the previous words can be considered in a forward RNN alone, we often use
it as as a bidirectional RNN in combination with a backward RNN that allows

for consideration of the following words:

Ei =f (gi-i-la 3) ) (2.25)

Ei; Ez:| - (2.26)

h; = concat

2.2.2 Attention Mechanism

The attention mechanism plays a role of determining the point to be noticed
when translating the next word with the encode input sentence and the internal
state of the decoder as the decision information. Attention weights for each h; in

each step t are computed as:
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_ score (Ei, ht,l)
B > score (Ej, ht—l)

(2.27)

ay(1)

where the attentional weight a,(i) is determined by a score function, which re-
ceives one encoder state h; and the previous decoder state h; as input. Every
time one word is translated, these attention weights are recalculated, and the
points to be noticed are changed every time.

For the decoder part, a context vector ¢;, which is a weighted summarization

of encoder states is calculated as:
=Y a(i)h;. (2.28)

2.2.3 Decoder

The decoder is generally composed of a single RNN, receives the context vector
and the information of the word outputted one before, and outputs the next
word. For this reason, translated sentences are generated one word at a time in
order from the beginning. The output from RNN is a vector having the same
number of dimensions as the number of unique words in the target language. The

computation of each hidden state h; of the decoder RNN is shown as follows:

ht = f (htfla Ce, ytfl) ) (229)
p(Y;ly<;, 8) = softmazx (W,h, + b,) (2.30)

where y;_; is the embedding of previous generated word, and directly drawn from
the target translation. The softmax function normalizes the output of RNN layer
like a probability distribution, and outputs the word with the highest probability.
This is the outline of the mechanism of NMT.
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3 Low-Resource Machine

Translation

In Chapter 2, we mentioned that SMT can obtain translation rules automatically
from a bilingual corpus, and searches for the translation candidate that maximizes
the translation probability score. Since it is based on statistical models, the
reliability of the probability estimation improves as the target-side monolingual
corpus used for training the language model and the bilingual corpus used for
training the translation model become large, and higher translation accuracy can
be expected. Although there are influences such as the number of speakers or
internet users in the target language, the language model is unlikely to be a
problem because it is relatively easy to acquire training data. On the other hand,
the bilingual corpus is the key issue to SMT, and it is impossible to translate
words or expressions not covered by the training data. Therefore it is desirable to
acquire as larger a bilingual corpus as possible. It has been reported that building
a practical SMT system requires more than million sentence pairs (Dyer et al.,
2008; Koehn et al.; 2007). However, considering language pairs not including
English, such as Japanese and French, while it is possible to acquire abundant
monolingual corpora in each language, it is difficult to acquire a bilingual corpus
of more than 1M sentence pairs. Thus, the bilingual corpus, which is a major
premise of SMT, can not be immediately acquired in a sufficient size in many
language pairs, and there is a problem in performing translation between an
arbitrary language pair.

This chapter describes the two representative approaches for coping with the
scarceness of bilingual corpus: pivot translation (Section 3.1) and active learning
for SMT (Section 3.2).
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3.1 Pivot Translation

Several methods have been proposed for SMT using pivot languages. These are
categorized into 3 categories: sequential pivot translation (Section 3.1.1), pseudo-
parallel corpus synthesis (Section 3.1.2), and triangulation of translation models

(Section 3.1.3), these are covered in following sections.

3.1.1 Sequential Pivot Translation

Parallel Parallel
source-pivot pivot-target
SMT . SMT
SoSice > source — pivot BUES > pivot — target G

Figure 3.1: Sequential pivot translation

Figure 3.1 shows a diagram of translation from source sentence to target sen-
tence by sequential pivot translation method (referred as cascade in experiments)
(de Gispert and Marifio, 2006). This method first trains source-pivot and pivot-
target MT models using respective bilingual corpora. Then, it is possible to
translate from a source sentence into the target language by translating the source
sentence into the pivot language and translating again the pivot sentence into the
target language. Since this method pipelines only input and output of MT sys-
tems, it is not necessary in use only SMT and any MT systems can be combined.
The advantage of this method is its ease of implementation just reusing available
systems, and accurate pivot translation can be expected if two accurate MT sys-
tems are given. However, there are disadvantages that additive error propagated
from two systems tends to damage translation accuracy, and optimization of the
entire connected system is complicated.

In naive implementation of this method, a source-pivot system may translate
into only a single pivot sentence with the highest translation probability, though
multi-sentential implementation has been proposed (Utiyama and lsahara, 2007)
to expand the search space by leaving top n candidates with the highest trans-

lation probability as shown in Figure 3.2. However, n times more decoding time
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parallel parallel
source-pivot pivot-target

source s S target
source — pivot pivot — target 9

Figure 3.2: Multi-sentential method

is required than usual, and no significant improvement in accuracy has been re-

ported (Utiyama and lsahara, 2007).

3.1.2 Pseudo-Parallel Corpus Synthesis

parallel
pivot-target

|

parallel SMT pseudo-parallel
source-pivot pivot — target source-target

SMT
source L
“| source — target

Figure 3.3: Pseudo-parallel corpus synthesis

Figure 3.3 shows a diagram of translation with SMT trained with source-target
pseudo-parallel corpus by pseudo-parallel corpus synthesis method (referred as
synthetic in experiments) (de Gispert and Marino, 2006). This method first uses
only one of source-pivot and pivot-target parallel corpora to train SMT system, for
example, pivot-target is used in this figure. Then, source-target pseudo-parallel
corpus is obtained by translating all the pivot-side sentences in source-pivot par-
allel corpus into target language. Thus, it is possible to train translation models
using the obtained source-target pseudo-parallel corpus. Accurate translation
can be expected if translation errors in the pseudo-parallel corpus do not signif-

icantly affect the training of statistical models. Since this method rebuilds new
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training data from existing systems, it has the advantage that once it creates a
pseudo-parallel corpus, it can use the same training procedure as regular SMT.
de Gispert and Marinio (2006) have performed experiments on pivot translation
of Catalan and English using Spanish as a pivot language, comparing sequential
pivot translation method and pseudo-parallel corpus synthesis. As a result, no

significant difference between these methods has been reported.

3.1.3 Triangulation of Translation Models

parallel parallel
source-pivot pivot-target
A\ 4 {l
SMT -------------------- SMT
source — pivot pivot — target

source S target
source — target 9

Figure 3.4: Triangulation of translation models

The training procedures of PBMT and SCFGs store the phrase pairs extracted
and scored from a bilingual corpus into a structured file called the phrase/rule
table. Figure 3.4 shows a diagram of triangulation of source-pivot and pivot-target
phrase/rule tables into a source-target table (Cohn and Lapata, 2007; Utiyama
and Isahara, 2007).

The triangulation method for PBMT first trains source-pivot and pivot-target
phrase tables as Tsp and Tpr respectively. Then this method triangulates Tsp
and Tpr by matching source-pivot and pivot-target phrase pairs having a com-
mon pivot phrase, and synthesizes them into source-target phrase pairs to cre-
ate source-target phrase table Tsr. For all the combined source-target phrases,
phrase translation probability ¢(-) and lexical translation probability ¢, (-) are

estimated according to the following equations:



o) = >  oUp3s)e@s) =~ D ¢p) @), (3.1)
pETspNTpPT pETspNTpr

oGl = > 0GB O ~ Y oGP em, (3:2)
peETspNTpT peETspNTpT

qblex (ﬂ?) = Z gblex (ﬂpv E) ¢lem <p|§) ~ Z gblex (ﬂp) ¢lea: (ﬁ|§) ) (33)
pETspNTpPr pETspNTpr

¢l6:1} (EB) = Z ¢l6]} (§|T)7 %) ¢le:c (Tjﬁ) = Z qblex (§|p) ¢lex (pﬁ) . (34)
peETspNTpT peTspNTpr

where 5, p and ¢ are phrases in source, pivot and target respectively, and p €
Tsp N'Tpr indicates that p is commonly contained in phrase tables Tsp and Tpr.

The triangulation method for SCFGs (Miura et al., 2015) can be done follow-
ing the same idea for PBMT, using pre-trained source-pivot and pivot-target rule
tables Tsp and Tpr respectively. Then this method searches Tsp and Tpr for
source-pivot and pivot-target rules having a common pivot symbols, and synthe-

size them into source-target rules to create rule table Tsr:

X — (5, 1) € Tsr (3.5)
st. X — (5,p) € Tsp N X — (p,t) € Tpr.
Although SCFG triangulation is differ from PBMT triangulation in that 5, p and ¢
are symbol strings which may contain terminals and non-terminals, its procedure
of estimating translation probability scores is same with Equations 3.1-3.4. Word
penalty and phrase penalty X — (5, t) are set as the same values of X — (p, 7).
Utiyama and Isahara (2007) have performed experiments on pivot translation of
several language pairs with English as a pivot language, comparing the sequential
pivot translation method and the triangulation method. As a result, it has been
reported that the triangulation method achieved higher BLEU score than simple

sequential pivot translation with n = 1 and multi-sentential method with n = 15.

3.1.4 Problems of Pivot-Side Ambiguity

Although triangulation is known for achieving higher translation accuracy than

other simple methods and has become a popular and standard work of pivot trans-
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lation nowadays, there still remains the problem of ambiguity. This subsection
describes reason causing the problem and examples.
In triangulation, Equations (3.1)-(3.4) are based on the memoryless channel

model, which assumes:

), (3.6)
¢(5pt) = ¢(slp). (3.7)

For example, in Equation (3.6), it is assumed that the translation probability
of target phrase given pivot and source phrases is never affected by the source

phrase. However, it is easy to come up with examples where this assumption does

not hold.
Anniherung approach approccio
Ansatz approximato& accesso
Zufahrt entrance ravvicinamento

Figure 3.5: An example of ambiguity in De-En-It triangulation.

Figure 3.5 shows an example of three words in German and Italian each of
which corresponds to the English polysemic word “approach.” In such a case,
finding associated source-target phrase pairs and estimating translation proba-
bilities properly become complicated problems. As a result, pivot translation is
significantly more ambiguous than standard translation.

This thesis distinguishes the ambiguity problem in pivot translation into two
types: semantic ambiguity and syntactic ambiguity, and proposes approaches to

resolve each of them.

3.1.5 Related Work

Up to this point, we have explained the representative pivot translation methods
in SMT. Other related research in pivot translation is mainly based on the trian-
gulation for PBMT, and focuses on discussion to further improve accuracy (Dabre
et al., 2015; Levinboim and Chiang, 2015; Zhu et al.; 2014). In the triangulation,

it is a problem how to correctly estimate the translation probability.
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Zhn et al. (2014) have proposed an estimation method of source-target transla-
tion probability by first estimating source-target co-occurrence counts instead of
the direct estimation from source-pivot and pivot-target translation probabilities
(Equations 3.1-3.4). They have reported that stable translation accuracy can be
obtained even in triangulation of two phrase tables with unbalanced table size.

Levinboim and Chiang (2015) have reported that it is especially difficult to
estimate word-level translation probability among phrase correspondence in the
triangulation stage. Then they have proposed a method of improving the quality
of the triangulation by estimating translation probability even for the correspon-
dence of words which can not be directly observed, using distributed expression
of words (Mikolov et al., 2013).

In this thesis, we discuss pivot translation with English as a pivot language,
though it is also known that the translation accuracy varies depending on how
to select a pivot language. The influence of pivot language selection on pivot
translation has been discussed in detail by Panl et al. (2009). In reality, there are
not many situations in which the pivot language can be selected from multiple
candidates, though in the case where bilingual corpora of the same scale can be
obtained via several languages, we should choose a pivot language having similar
language structure with source or target language.

In addition, there is no need to limit the number of pivot languages necessar-
ily to one, and methods to consider multiple pivot languages at the same time
have been also proposed. As representative for that purpose, there are methods
such as aggregating multiple source-target phrase/rule tables obtained by trian-
gulation with respective pivot languages into one table with linear interpolation,
and searching by considering multiple translation models simultaneously (Dabre
et al., 2015).

Here we mention the relationship between pivot language in pivot translation
and interlingual language (interlingua (Vauquois, 1968)) in RBMT. An attempt
to MT using interlingua has a long history, and before the SMT was invented, the
levels of translation has been discussed from the beginning when RBMT has been
devised (Nirenburg, 1989). Figure 3.6 is called Vauquois pyramid and famous as
a diagram showing the levels of analysis and generation in MT. It is expected

that source language text is translated with less information loss by analyzing to
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Figure 3.6: Levels of translation (“Vauquois pyramid”)

higher level and transferring into target language. Interlingua, which is the top of
the pyramid, is an ideal language that can cover expressions of all the languages,
though such natural languages do not exist. In the past, there has been an
attempt to convert arbitrary text into an artificial interlingua with RBMT which
describes translation rules manually. However, with such rule-based approaches,
it is impossible to cover various domains and expressions with hands of experts,
and indeed, there is no human being who is familiar with every language.

With the invention of SMT, using bilingual corpora it became possible to trans-
late highly accurately far more efficiently than rule description by experts. How-
ever, it is said that today’s MT systems are wandering around the bottom of
Vauquois pyramid. When an arbitrary natural language is used as a pivot lan-
guage such as interlingua, some information might be lost depending on the ex-
pressiveness of the selected language, and then it may be impossible to reproduce
the information of the source language text in the process of generation. For this
reason, a form with higher expressiveness than an simple word sequence should
be used for pivot language, and as an example, MT frameworks using ontology
as intermediate representation have been proposed (Hovy, 1998). In addition,
training methods of multilingual NMT, which improve translation accuracy by
causing translation tasks of plural language pairs to be trained as a common en-
coder, have been also proposed (Dong et al., 2015; Johnson et al., 2017; Zoph and
Knight, 2016). This can be interpreted as handling distributed representation of

translation units well as an pivot language.
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3.2 Active Learning

Active learning is a framework that makes it possible to efficiently train statis-
tical models by selecting informative examples from a pool of unlabeled data.
Most work on active learning for SMT, and natural language tasks in general,
has focused on choosing which sentences to give to annotators. These methods
generally assign priority to sentences that contain data that is potentially useful
to the MT system according to a number of criteria.

For example, there are methods to select sentences that contain phrases that
are frequent in monolingual data but not in bilingual data (Eck et al.; 2005), have
low confidence according to the MT system (Haffari et al.; 2009), or are predicted
to be poor translations by an MT quality estimation system (Ananthakrishnan
et al., 2010a). However, while the selected sentences may contain useful phrases,
they will also generally contain many already covered phrases that nonetheless
cost time and money to translate.

To solve the problem of wastefulness in full-sentence annotation for active learn-
ing, there have been a number of methods proposed to perform sub-sentential
annotation of short phrases for natural language tasks (Bloodgood and Callison-
Burch, 2010; Settles and Craven, 2008; Sperber et al., 2014; Tomanek and Hahn,
2009). For MT in particular, Bloodgood and Callison-Burch (2010) have proposed
a method that selects poorly covered n-grams to show to translators, allowing
them to focus directly on poorly covered parts without including unnecessary
words (Section 3.2.3).

3.2.1 Active Learning for Machine Translation

In this section, we first provide an outline of the active learning procedure to
select phrases for SMT data. We regard a segment as a word sequence with
arbitrary length, which indicates that full sentences and single words both qualify
as segments. In Algorithm 1, we show the general procedure of incrementally
selecting the next candidate for translation from the source language corpus,
requesting and collecting the translation in the target language, and retraining
the models.

In lines 1-4, we define the datasets and initialize them. SrcPool is a set with
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Algorithm 1 Active learning for SMT
: Init:

1

2:  SrcPool < source language data including candidates for translation
3:  Translated < translated parallel data

4:  Oracle < oracle giving the correct translation for an input phrase

5: Loop Until StopCondition:

6:  TM < TrainTranslationModel(Translated)

7. NewSrc < Select NextSegment(SrcPool, Translated, T M)

8:  NewTrg < GetTranslation(Oracle, NewSrc)

9:  Translated < Translated J {(NewSrc, NewTrg)}

each sentence in source language corpus as an element. Translated indicates a
set with source and target language phrase pairs. Translated may be empty, but
in most cases it consists of a seed corpus upon which we would like to improve.
Oracle is an oracle (e.g. a human translator), that we can query for a correct
translation for an arbitrary input phrase.

In lines 5-9, we train models incrementally. StopCondition in line 5 is an
arbitrary timing when to stop the loop, such as when we reach an accuracy goal
or when we expend our translation budget. In line 6, we train the translation
model using T'ranslated, the available parallel data at this point. We evaluate
the accuracy after training the translation model for each step in the experiments.
In line 7, we select the next candidate for translation using features of SrcPool,
Translated and T'M to make the decision.

In the following sections, we discuss existing methods to implement the selec-

tion criterion in line 7.

3.2.2 Sentence Selection using N-Gram Frequency

The first traditional method that we cover is a sentence selection method. Specif-
ically, it selects the sentence including the most frequent uncovered phrase with
a length of up to n words in the source language data. This method enables us
to effectively cover the most frequent n-gram phrases and improve accuracy with
fewer sentences than random selection. Bloodgood and Callison-Burch (2010)

demonstrate results of a simulation showing that this method required less than
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80% of the data required by randomly selected sentences to obtain the same
accuracy.

However, the selected full sentences include many phrases already covered in
the parallel data. This may cause an additional cost for words in redundant
segments, a problem resolved by the phrase selection approach detailed in the

following section.

3.2.3 Phrase Selection using N-Gram Frequency

In the second approach, we directly select and translate n-gram phrases that are
the most frequent in the source language data but not yet covered in the translated
data (Bloodgood and Callison-Burch, 2010). This method allows for improvement
of coverage with fewer additional words than sentence selection, achieving higher
efficiency by reducing the amount of data unnecessarily annotated. Bloodgood
and Callison-Burch (2010) showed that by translating the phrases selected by
this method using a crowdsourcing website, it was possible to achieve a large

improvement of BLEU score, outperforming similar sentence-based methods.

any one of the preceding claims

L r
oL ~
W Cd
pl ~
- Cd

Figure 3.7: An example of n-gram selection method (n = 4)

Nevertheless, our experiments identified two major practical problems with this
method. First, as shown in Figure 3.7, many of the selected phrases overlap with
each other, causing translation of redundant phrases, damaging efficiency. Second,
it is common to see fragments of complex phrases such as “one of the preceding,”
which may be difficult for workers to translate into a contiguous phrase in the
target language.

In addition to the two major issues, this method limits the maximum phrase
length to n = 4, precluding the use of longer phrases. However, using a larger
limit such as n = 5 is not likely to be a fundamental solution, as it increases the

number of potentially overlapping phrases, and also computational burden.
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4 Contextual Disambiguation in

Pivot Translation

As mentioned in Section 3.1.3, triangulation method should estimate correspond-
ing source-target phrase pairs given source-pivot and pivot-target phrase pairs
and their probability scores. Section 3.1.4 mentioned that pivot-side ambiguity
causes difficulty of triangulation. This chapter discusses the problem of semantic
ambiguity due to word sense ambiguity and interlingual differences, and a method

to solve this problem by incorporating pivot-side contextual information.

4.1 Word Sense Ambiguity

SR approach approach approccio
77O0—F approximation approximation accesso

e SN access access ravvicinamento
(a) Ja-En phrase correspondence (b) En-It phrase correspondence

bl | approccio plig | approccio
77a—F accesso 770—F accesso

¥&ia ravvicinamento iR ravvicinamento

(c) All the Ja-It candidates (d) Correct Ja-It phrase correspondence

Figure 4.1: Estimation of source-target word correspondence

This section illustrates the difficulty of triangulation due to polysemy. In Fig-
ure 4.1, it is shown that (a) Japanese-English and (b) English-Italic phrase cor-

36



respondence are given in individually trained translation models, then (¢) many
candidates to be triangulated resulting difficulty to accurately connect as (d) the

correct Japanese-Italic phrase correspondence.

plag |\ : > approccio
i (via: approach)
UTCL : > accesso
i (via: approach)
plag |\ > ravvicinamento
(via: approach, approximation)
7JO—F > approccio

(via: approach)

Figure 4.2: Standard triangulated phrases

Furthermore, in the conventional triangulation method, information about
pivot phrases that behave as bridges between source and target phrases is lost

after learning phrase pairs, as shown in Figure 4.2.

il ——  (approccio, approach)
il —  {ravvicinamento, approach)

L —>  (ravvicinamento, approximation)

77J0—3F —— (approccio, approach)

Figure 4.3: Proposed triangulated phrases

To overcome the problem, this thesis proposes a novel triangulation method
that remembers the pivot phrase connecting source and target in the records of
phrase/rule table, and estimates a joint translation probability from the source
to target and pivot simultaneously. Figure 4.3 shows an example of triangulated
phrases in this proposed method. The advantage of this approach is that generally
we can obtain rich monolingual resources in pivot languages such as English, and

SMT can utilize this additional information to improve the translation quality.
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4.2 Triangulation Remembering the Pivot

To help reduce this ambiguity in standard triangulation method, our proposed
triangulation method remembers the corresponding pivot phrase as additional in-
formation to be utilized for disambiguation. Specifically, instead of marginalizing
over the pivot phrase p (Section 3.1.3), we create an MSCFG rule (Section 2.1.7)

for the tuple of the connected source-target-pivot phrases such as:

X = (5,t,p) € Tsrp
S

- 4.1
S.t.X—><,ﬁ>€TSP N X—><T9,t>ETPT ( )

where Tsrp indicates the MSCFG rule table triangulated from SCFG rule tables
Tsp and Tpp. The advantage of translation with these rules is that they allow
for incorporation of additional features over the pivot sentence such as a strong
pivot language models.

In addition to the equations 3.1-3.4, we also estimate translation probabilities
o(t,D|3), ¢(3|p,t) that consider both target and pivot phrases at the same time

according to:

¢ (t,p[s) = o (tp)¢(pls), (4.2)
¢(slp,t) = ¢(slp). (4.3)

Translation probabilities between source and pivot phrases ¢(p[s), ¢(3|D), dre: (P[3),
and ¢, (5[p) can also be used directly from the source-pivot rule table. This
results in 13 features for each MSCFG rule: 10 translation probabilities ¢ (£|5),
¢ (5]t) ¢ (p[3)> ¢ (5P) > Prea (E15) > Prea (3]1) > drex (DIS)> drex (50)> & (L, 115), ¢ (5[D, 1),
2 word penalties counting the terminals in ¢ and p, and a constant phrase penalty
of 1.

It should be noted that remembering the pivot results in significantly larger rule
tables. To save computational resources, several pruning methods are conceivable.
Neubig et al. (2015) show that an effective pruning method in the case of a main
target 17 with the help of target T3 is the Ti-pruning method, namely, using L
candidates of #; with the highest translation probability ¢(¢;|3) and selecting ¢y
with highest ¢(#1,?5|3) for each #;. We follow this approach, using the L best t,
and the corresponding 1 best p .
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4.3 Experiments

To investigate the effect of the proposed approach, we perform experiments com-
paring pivot translation among multiple language pairs with the following proce-

dure.

4.3.1 Experimental Set-Up

We evaluate the proposed triangulation method through pivot translation exper-
iments on the United Nations Parallel Corpus (UN6Way (Ziemski et al., 2016))
corpus. UN6Way is a line-aligned multilingual parallel corpus that includes data
in English (En), Arabic (Ar), Spanish (Es), French (Fr), Russian (Ru) and Chi-
nese (Zh), covering different families of languages. It contains more than 11M
sentences for each language pair, and is therefore suitable for multilingual transla-
tion tasks such as pivot translation. In these experiments, we fixed English as the
pivot language considering that it is the language most frequently used as a pivot
language. This has the positive side-effect that accurate phrase structure parsers
are available in the pivot language, which is good for our proposed method. We
perform pivot translation on all the combinations of the other 5 languages, and
compared the accuracy of each method.

In pivot translation, source-pivot and pivot-target parallel corpus is respectively
used to train translation models. However, it is assumed that direct sentence tu-
ples of source, pivot, and target are rarely found in scenes where pivot translation
is required. Therefore, we ensure that there will be no common pivot sentence in
source-pivot and pivot-target corpus used for training in this experiment.

In our basic training setup, we use 100k sentences for training both the TMs
and the target LMs. We assume that in many situations, a large amount of
English monolingual data is readily available and therefore, we train pivot LMs
with different data sizes up to 5M sentences. The archive of this corpus contains
already split data sets: about 11M sentences for training, 4,000 sentences respec-
tively for evaluation and for parameter tuning. As preprocessing, the parallel
sentences including duplicated English sentence are removed to ensure unique-
ness of pivot sentences, and the sentences of length over 60 words in training

data are filtered out to ensure accuracy of word alignment, and the sentences
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over 80 words in evaluation and tuning data are filtered out as well. Then, there
remain about 8M sentences for training, and about 3,800 sentences respectively
for evaluation and tuning. Since the plain texts of Chinese are not divided for
words, they are tokenized with Chinese segmentation model of KyTea (Neubig
et al., 2011). However, since the number of combinations to be evaluated is
enormous, we hold out much small data sets compared with preprocessed data
size: 100k sentences respectively for training source-pivot (referred as trainl) and
pivot-target (referred as train2) translation models, and 1,500 sentences respec-
tively for evaluation and tuning, such that trainl and train2 do not have any
duplicated English sentences.

As a decoder, we use Travatar (Neubig, 2013), and train SCFG TMs with
its Hiero extraction code. All the translation tasks use 5-gram language models
trained from 200k target-side sentences of trainl+train2 using KenLM (Heafield,
2011) to evaluate naturalness during decoding. Translation results are evaluated
by BLEU (Papineni et al., 2002) and we tuned to maximize BLEU scores using
MERT (Och, 2003). For trained and triangulated TMs, we use 77 rule pruning
with a limit of 20 rules per source rule. For decoding using MSCFG, we adopt
the sequential search method.

We evaluate 3 pivot translation methods and 1 direct translation method:

Cascade:
Sequential pivot translation with source-pivot and pivot-target SCFG mod-
els (Section 3.1.1). “w/ PvtLM 200k/5M” indicates translation with pivot
LM trained using 200k/5M sentences respectively.

Tri. SCFG:
Triangulating source-pivot and pivot-target SCFG TMs into a source-target
SCFG TM using the traditional method (Section 3.1.3).

Tri. MSCFG:
Triangulating source-pivot and pivot-target SCFG TMs into a source-target-
pivot MSCFG TM in our approach. “w/o PvtLM” indicates translating
without a pivot LM and “w/ PvtLM 200k /5M” indicates a pivot LM trained
using 200k /5M sentences respectively (proposed, Section 4.2).
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BLEU Score [%)]

Sre | Trg Cascade Tei. SCFG Tri. MSCFG
Direct 1/2 w/ PvtLM w/ PvtLM
200k 5M (baseline) w/o PviLM 200k 5M
Es 29.12 / 29.41 | 26.78 1 28.52 27.84 1 28.44 128.48 129.13
Ar Fr 23.68 / 22.19 | 20.76 i 22.02 21.37 121.94 122.01 1 22.52
Ru | 17.28 / 16.82 | 14.71 15.91 16.22 16.38 t16.61 1 16.76
Zh 14.51 / 14.54 | 13.85 1 15.01 14.38 14.43 114.93 1 15.50
Ar | 14.46 / 14.17 | 13.87 +14.35 13.97 14.19 t14.34 114.42
s Fr 35.87 / 34.81 | 29.72 30.20 32.62 32.70 32.81 1 32.94
Ru | 21.58 /22.18 | 19.55 20.52 20.91 20.92 20.95 1 21.52
Zh | 17.56 / 18.10 | 17.54 1 18.37 17.79 17.56 t18.13 1 18.70
Ar 12.37 / 12.49 | 11.82 11.96 12.35 12.00 12.35 112.71
r Es 38.34 / 38.82 | 33.16 33.90 36.10 36.00 36.33 1 36.93
Ru | 20.10 / 20.86 | 18.33 18.95 19.51 1 19.91 120.23 | 20.44
Zh 15.99 / 15.90 | 15.73 16.35 16.17 16.20 16.40 1 16.58
Ar 12.29 / 12.13 | 11.47 11.72 11.75 11.84 11.91 112.18
Es 31.01 / 31.39 | 28.67 1 30.23 29.60 1 29.90 130.59 131.40
Ru o | 2sma /2571 | 23.64 1 25.09 24.60 24.63 125.20 i 25.32
Zh | 15.85 /15.75 | 1599 { 16.68 16.12 15.75 116.66 1 16.81
Ar 10.25 / 10.13 9.85 9.79 9.90 9.98 10.04 _10.07
7h Es 23.55 / 23.76 | 23.10 t 23.98 23.41 23.62 t23.83 | 24.45
Fr 18.83 / 18.72 | 18.15 18.45 18.39 18.30 18.51 1 19.16
Ru | 14.96 / 15.44 | 13.92 13.65 14.00 14.24 1 14.41 1§ 14.67

Table 4.1: Results of each method, comparing the proposed triangulation remem-

Direct:
Translating with a direct SCFG trained on the source-target parallel corpus
(not using a pivot language) for comparison. “Direct 1/2” indicates the

evaluation scores of SCFG models trained respectively with trainl/train2.

bering the pivot with other methods.

4.3.2 Results and Analysis

The result of experiments using all combinations of pivot translation tasks via
English is shown in Table 4.1. Significant difference test is tested for the results

according to bootstrap resampling method (Koehn, 2004). Bold face indicates
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higher BLEU score than the baseline triangulation Tri. SCFG, underline indicates
the highest BLEU score in pivot translation, and daggers indicate statistically
significant gains over Tri. SCFG (1 : p < 0.05,1 : p < 0.01). From the results,
we can see that the proposed triangulation method considering pivot language
models outperforms the traditional triangulation method for all language pairs,
and translation with larger pivot language models improves the BLEU scores.
For all languages, the pivot-remembering triangulation method with the pivot
language model trained with 5M sentences achieves the highest score of the pivot
translation methods, with gains of up to 1.8 BLEU points from the baseline
method. The average gain of BLEU score in Tri. MSCFG w/ PvtLM 5M is about
0.75 points. This shows that remembering the pivot and using it to disambiguate
results is consistently effective in improving translation accuracy.

Also to investigate the effects of different factors separately, we compare tri-
angulation method that creates MSCFG rule table but not uses pivot language
model for decoding (Tri. MSCFG w/o PvtLM). We can also see that the MSCFG
triangulated model without using the pivot language model slightly outperforms
the standard SCFG triangulation method for the majority of language pairs. It
is conceivable that the additional scores of translation probabilities with pivot
phrases are effective features that allow for more accurate rule selection.

Since a method using a large-scale pivot language model is possible not only by
proposed triangulation into MSCFG rule table, but also by conventional method,
we evaluate the translation score of sequential pivot translation with pivot lan-
guage model trained with 5M sentences (Cascade w/ PvtLM 5M). Cascade w/
PvtLM 5M achieves higher score in all language pairs except Zh-Ar and Zh-Ru,
compared with the sequential pivot translation method which uses pivot language
model of only 200k sentences, then it has been confirmed that using simply large
scale of language model lead to improvement. However, this accuracy improve-
ment depends on language pairs, and Cascade w/ PvtLM 5M did not result in
stable improvement when compared with the conventional triangulation method
Tri. SCFG. In addition, when comparing the proposed method Tri. MSCFG w/
PvtLM 5M with Cascade w/ PvtLM 5M, the proposed method achieves higher
score in the tested language pairs in spite of using the same pivot language model,

and thus it can be said that the combination of triangulation and large-scale pivot
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Translation Accuracy vs. Pivot-LM Size (Zh-Es via En) Translation Accuracy vs. Pivot-LM Size (Ar-Ru via En)
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Figure 4.4: Influence of pivot LM size on pivot translation accuracy
language model is effective.

4.3.3 Influence of Pivot Language Model Strength

Although the magnitude of the influence of the pivot language model size on pivot
translation differs on language pairs, it can also be confirmed that the accuracy
improves as the training data size of the pivot language model increases. Figure
4.4 shows the influence the intermediate language model trained with different
data sizes on the accuracy of Zh-Es (left) and Ar-Ru (right) translation. It can
also be observed from the figure that the pivot language model helps to disam-
biguate and contributes to the improvement of translation accuracy. Although
it can also be seen that the influence on the translation accuracy by increasing
the training data size of pivot language model is logarithmic, this is the same
tendency as the influence of the target language model size on the translation
accuracy (Brants et al., 2007). In the Zh-Es translation, there is a prospect of
accuracy improvement by using a larger pivot language model from the tendency
of the graph, whereas in the case of Ar-Ru, there is a limit to further improvement

since pivot language model of 5M sentences hardly improve over 2M sentences.
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4.3.4 Qualitative Analysis

We show an example of a translated sentence for which pivot-side ambiguity

seems to be resolved in the proposed triangulation method.

Input (French):
Le nom du candidat proposé est indiqué dans 'annexa a la présente

note .

Reference (Spanish):
El nombre del candidato propuesto se presenta en el anexo de la presente

nota .

Corresponding English Sentence:
The name of the candidate thus nominated is set out in the annex to the

present note .

Tri. SCFG:
El nombre del proyecto de un candidato se indica en el anexo a la presente
nota . (BLEU+1: 34.99)

Tri. MSCFG w/ PvtLM 5M:
El nombre del candidato propuesto se indica en el anexo a la presente
nota . (BLEU+1: 61.13)
The name of the candidate proposed indicated in the annex to the present

note . (Generated English Sentence)

In the example above, the French participle “prposé” (meaning “nominated”)
in the input sentence corresponds to the Spanish participle “propuesto” in trans-
lation. However, in the conventional triangulation method, the Spanish noun
“proyecto” (meaning “project” or “plan”), inappropriate correspondence, is se-
lected in derivation, causing incorrect translation. On the other hand, it seems
that the translation result improved since “propuesto” in Spanish and “proposed”
in English are simultaneously associated with “proposé” in the input sentence
with the proposed method, prompting appropriate vocabulary selection from the

context of the words in the generated English sentence.
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Conversely, we show an example of translation result with no improvement,

since proposed method does not work well.

Input (French):
J . Risques d’aspiration : citere de viscosité pour la classification des

mélanges ;

Reference (Spanish):
J . Peligros por aspiracion : criterio de viscosidad para la clasificacién de

mezclas ;

Corresponding English Sentence:
J . Aspiration hazards : viscosity criterion for -classification of

mixtures ;

Direct 1:
J . Riesgos d’aspiration : criterio de viscosité para la clasificacion de los
mélanges ; (BLEU+1: 34.20)

Direct 2:
J . Riesgos d’aspiration : criterio de viscosité para la clasificacion de
mezclas ; (BLEU+1: 49.16)

Tri. MSCFG w/ PvtLM 5M:
J . Riesgos d’aspiration : viscosité criterios para la clasificacion de
mélanges ; (BLEU+1: 27.61)
J . Risk d’aspiration : viscosité criteria for the categorization of

mélanges ; (Generated English Sentence)

In this example, French technical terms such as “d’aspiration” (meaning “as-
piration”) and “mélanges” (meaning “mixture”) are less frequent in the training
corpus and, “d’aspiration” does not appear in both of train! and train2, thereof
it is not translatable in both Direct 1/2 and treated as an unknown word, and
“mélanges” is treated as unknown in Direct 1 since it appears only in train2.
Since this problem can not be solved also by sequential pivot translation or
pseudo-parallel corpus synthesis, it is necessary to supplement such uncovered

expressions using external dictionaries or active learning methods.
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Moreover in this example, besides the problem of unknown words, there is also
a problem that the singular form of Spanish noun “criterio” (meaning “criterion”)
is in plural form “criterios” in the proposed triangulation method, and word order

is also wrong.

4.4 Summary

In this chapter, we have proposed a method for pivot translation using triangu-
lation of SCFG rule tables into an MSCFG rule table that remembers the pivot,
and performing translation with pivot LMs. In experiments, we found that these
models are effective in the case when a strong pivot language model exists.

This proposed method is effective in the case that available source-pivot and
pivot-target parallel corpora are not large (e.g. of less than hundred thousands
sentence pairs) and amount of available pivot monolingual corpus is large on the
contrary. Since MSCFG decoder demands huge amount of memory and compu-
tational time and is difficult to distributed processing, it is not realistic to scale
up with the same framework. Moreover, although MSCFG decoder helps to se-
lect appropriate translation rule with pivot language model, it can not essentially
solve the ambiguity problem and inappropriately connected rules still remain in
the triangulated rule table as a noise. Therefore, in the following chapter, we
discuss how to reduced the noisy rules in triangulated TMs and make it closer to
directly trained TMs.
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5 Syntactic Disambiguation in

Pivot Translation

In Section 4, we showed example of semantic ambiguity and proposed triangula-
tion method to consider pivot-side contextual information. However, there occurs
not only semantic ambiguity but also syntactic ambiguity in pivot translation.
This chapter discusses the problem of syntactic ambiguity due to the fact that

parts-of-speech or phrase structures are not uniquely determined in local context.

5.1 Syntactic Ambiguity

[X1] enregistrer [X2] [X1] 2% [X2]

[X1] record [X2]
[X1] dossier [X2] [X2] [X1] 123%

(a) Standard triangulation method matching phrases

\d

[X1] enregistrer [X2] /VP\ [X1] 2% [X2]

TO VB NP
| | |
[X1] record [X2]

NP
[X1] dossier [X2] /\ [X2] [X1] 2%

DT NN NP
| | |
[X1] record [X2]

(b) Proposed triangulation method matching subtrees

Figure 5.1: Example of disambiguation by parse subtree matching (Fr-En-Zh)
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In Figure 5.1 (a), we show an example of standard triangulation on Hiero TMs
that combines hierarchical rules of phrase pairs by matching pivot phrases with
equivalent surface forms. This example also demonstrates problems of ambiguity:
the English word “record” can correspond to several different parts-of-speech
according to the context. More broadly, phrases including this word also have
different possible grammatical structures, but it is impossible to uniquely identify
this structure unless information about the surrounding context is given.

This varying syntactic structure will affect translation. For example, the French
verb “enregistrer” corresponds to the English verb “record”; but the French noun
“dossier” also corresponds to “record” — as a noun. As a more extreme example,
Chinese is a languages that does not have inflections according to the part-of-
speech of the word. As a result, even in the contexts where “record” is used with
different parts-of-speech, the Chinese word “123R” will be used, although the
word order will change. These facts might result in an incorrect connection of
“[X1] enregistrer [X2]” and “[X2] [X1] IE3R” even though proper correspondence
of “[X1] enregistrer [X2]” and “[X1] dossier [X2]” would be “[X1] IE23R [X2]” and
“[X2] [X1] 1E23R". Hence a superficial phrase matching method based solely on
the surface form of the pivot will often combine incorrect phrase pairs, causing
translation errors if their translation scores are estimated to be higher than the
proper correspondences.

Given this background, we hypothesize that disambiguation of these cases
would be easier if the necessary syntactic information such as phrase structures
are considered during pivoting. To incorporate this intuition into our models,
we propose a method that considers syntactic information of the pivot phrase,
as shown in Figure 5.1 (b). In this way, the model will distinguish translation
rules extracted in contexts in which the English symbol string “[X1] record [X2]”
behaves as a verbal phrase, from contexts in which the same string acts as a noun
phrase.

While standard triangulation uses only the surface forms for performing trian-
gulation, we propose two methods for triangulation based on syntactic matching
(Section 5.2.1). The first places a hard restriction on exact matching of parse
trees (Section 5.2.1) included in translation rules, while the second places a softer

restriction allowing partial matches (Section 5.2.2).
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5.2 Triangulation with Syntactic Information

In Section 5.1, we explained the standard triangulation method and mentioned
that the pivot-side ambiguity causes incorrect estimation of translation probabil-
ity and the translation accuracy might decrease. To address this problem, it is
desirable to be able to distinguish pivot-side phrases that have different syntactic
roles or meanings, even if the symbol strings are identical. In the following two
sections, we describe two methods to distinguish pivot phrases that have syntac-
tically different roles, one based on exact matching of parse trees, and one based

on soft matching.

5.2.1 Exact Matching of Parse Subtrees

In the exact matching method, we first train pivot-source and pivot-target T2S
TMs by parsing the pivot side of parallel corpora, and store them into rule tables
as Tpg and Tpr respectively. Synchronous rules of Tprs and Tpr take the form
of X — (p,5) and X — (p, ) respectively, where p is a symbol string that
expresses pivot-side parse subtree (S-expression), s and ¢ express source and target
symbol strings. The procedure of synthesizing source-target synchronous rules
essentially follows equations (3.1)-(3.4), except using Tpg instead of Tsp (direction
of probability features is reversed) and pivot subtree p instead of pivot phrase
p. Here s and ¢ do not have syntactic information, and thus the synthesized
synchronous rules should be hierarchical rules explained in Section 2.1.5.

The matching condition of this method has harder constraints than matching
of superficial symbols in standard triangulation, and has the potential to reduce
incorrect connections of phrase pairs, resulting in a more reliable triangulated
TM. On the other hand, the number of connected rules decreases as well in this
restricted triangulation, and the coverage of the triangulated model might be
reduced. Therefore it is important to create TMs that are both reliable and have

high coverage.
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5.2.2 Partial Matching of Parse Subtrees

To prevent the problem of the reduction of coverage in the exact matching
method, we propose a partial matching method that keeps coverage just like
standard triangulation by allowing connection of incompletely equivalent pivot
subtrees. To estimate translation probabilities in partial matching, we first define
weighted triangulation generalizing the equations (3.1)-(3.4) of standard triangu-
lation with the weight function ¢ (-):

6 115) = 25 0 (W) ¥ (irlis) o (5sls). (1)
8 5lT) = Zm (s19s) v (s ir) & () 52)
brer (15) = Zm () ¥ (5els) e (515), (53)
e (51E) = Zz e (3155) () e () (54)

where ps € Tsp and pr € Ppp are pivot parse subtrees of source-pivot and
pivot-target synchronous rules respectively. By adjusting v(-), we can control
the magnitude of the penalty for the case of incompletely matched connections.
If we define ¥ (pr|ps) = 1 when pr is equal to ps and ¥ (pr|ps) = 0 otherwise,
equations (5.1)-(h.4) are equivalent with equations (3.1)-(3.4).

Better estimating v (+) is not trivial, and co-occurrence counts of pg and pr are

not available. Therefore we introduce a heuristic estimation method as follows:

R w(pPs, Pr) A
= ——— - max w , 5.5
Y(prips) S w(is.p) A (s, D) (5.5)
A | A w(pASWpAT) A A
= ——— - max w(p, 5.6
¢(p5|pT) ZﬁETSP w(p,pT) peTap (p pT) ( )
. 0 (flat(ps) # flat(pr))
w(pS7pT) = R . . (57)
exp (—d (ps,pr))  (otherwise)
d(ps,pr) = TreeEdit Distance(ps, pr) (5.8)

where flat(p) returns the symbol string of p keeping non-terminals, and

TreeEdit Distance(pg, pr) is minimum cost of a sequence of operations (contract
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an edge, uncontract an edge, modify the label of an edge) needed to transform
ps into pr (Klein, 1998).

According to equations (5.5)-(5.8), we can assure that incomplete match of
pivot subtrees leads d(-) > 1 and penalizes such that ¢(-) < 1/e? < 1/e, while
exact match of subtrees leads to a value of ¢(-) at least e ~ 2.718 times larger

than when using partially matched subtrees.

5.3 Experiments

5.3.1 Experimental Set-Up

To investigate the effect of our proposed approach, we evaluate the translation
accuracy through pivot translation experiments on the United Nations Parallel
Corpus (UN6Way) (Ziemski et al., 2016). UN6Way is a line-aligned multilin-
gual parallel corpus that includes data in English (En), Arabic (Ar), Spanish
(Es), French (Fr), Russian (Ru) and Chinese (Zh), covering different families of
languages. It contains more than 11M sentences for each language pair, and is
therefore suitable for multilingual translation tasks such as pivot translation. In
these experiments, we fixed English as the pivot language considering that it is
the language most frequently used as a pivot language. This has the positive
side-effect that accurate phrase structure parsers are available in the pivot lan-
guage, which is good for our proposed method. We perform pivot translation
on all the combinations of the other 5 languages, and compared the accuracy of
each method. For tokenization, we adopt SentencePiece," an unsupervised text
tokenizer and detokenizer, that is although designed mainly for neural MT, we
confirmed that it also helps to reduce training time and even improves translation
accuracy in our Hiero model as well. We first trained a single shared tokenization
model by feeding a total of 10M sentences from the data of all the 6 languages, set
the maximum shared vocabulary size to be 16k, and tokenized all available text
with the trained model. We used English raw text without SentencePiece tok-
enization for phrase structure analysis and for training Hiero and T2S TMs on the

pivot side. To generate parse trees, we used the Ckylark PCFG-LA parser (Oda

!https://github.com/google /sentencepiece
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et al., 2015), and filtered out lines of length over 60 tokens from all the parallel
data to ensure accuracy of parsing and alignment. About 7.6M lines remained.
Since Hiero requires a large amount of computational resources for training and
decoding, so we decided not to use all available training data but first 1M lines
for training each TM. As a decoder, we use Travatar (Neubig, 2013), and train
Hiero and T2S TMs with its rule extraction code. We train 5-gram LMs over
the target side of the same parallel data used for training TMs using KenLLM
(Heafield, 2011). For testing and parameter tuning, we used the first 1,000 lines
of the 4,000 lines test and dev sets respectively. For the evaluation of translation
results, we first detokenize with the SentencePiece model and re-tokenized with
the tokenizer of the Moses toolkit (Koehn et al.; 2007) for Arabic, Spanish, French
and Russian and re-tokenized Chinese text with KyTea tokenizer (Neubig et al.,
2011), then evaluated using case-sensitive BLEU-4 (Papineni et al., 2002).

We evaluate 6 translation methods:

Cascade:
Sequential pivot translation with source-pivot and pivot-target Hiero TMs

(baseline, Section 3.1.1).

Tri. Hiero:
Triangulating source-pivot and pivot-target Hiero TMs into a source-target
Hiero TM using the traditional method (baseline, Section 3.1.3).

Tri. TreeExact
Triangulating pivot-source and pivot-target T2S TMs into a source-target
Hiero TM using the proposed exact matching of pivot subtrees (proposed
1, Section h.2.1).

Tri. TreePartial
Triangulating pivot-source and pivot-target T2S TMs into a source-target
Hiero TM using the proposed partial matching of pivot subtrees (proposed
2, Section 5.2.2).

Direct:
Translating with a Hiero TM directly trained on the source-target parallel

corpus without using pivot language (as an oracle).
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BLEU Score [%)]
Source | Target Direct Cascade Tri. Hiero  Tri. TreeExact  Tri. TreePartial
(baseline)  (baseline) (proposed 1) (proposed 2)
Es 38.49 30.95 34.20 1 34.97 1 35.94
Ar Fr 33.34 25.08 29.93 1 30.68 1 30.83
Ru 24.63 18.70 22.94 123.94 124.15
Zh 27.27 21.77 22.78 125.17 125.07
Ar 27.18 22.72 22.97 1 24.09 124.45
e Fr 43.24 35.40 38.74 1 39.62 1 40.12
Ru 28.83 22.43 26.35 127.25 12741
Zh 27.08 23.36 24.54 25.00 1 25.16
Ar 25.10 19.88 21.65 21.40 1 22.13
Fr Es 45.20 37.75 40.16 1 41.03 141.99
Ru 27.42 20.64 24.71 T 25.24 1 25.64
Zh 25.84 21.79 23.16 23.56 23.53
Ar 22.53 18.71 19.82 19.86 20.35
Ru Es 37.60 31.33 34.56 34.96 1 35.62
Fr 34.05 27.11 30.75 t31.43 1 31.67
Zh 28.03 21.81 24.88 25.07 25.12
Ar 20.09 14.82 16.66 17.01 117.73
7h Es 30.66 23.15 27.84 27.99 28.05
Fr 25.97 19.55 23.82 24.34 1 24.35
Ru 21.16 14.79 18.63 1 19.58 1 19.59

Table 5.1: Results of each method, comparing the proposed syntactic matching

methods in triangulation with other methods.

5.3.2 Results

Translation accuracy: The result of experiments using all combinations of
pivot translation tasks for 5 languages via English is shown in Table 5.1. From the
results, we can see that the proposed partial matching method of pivot subtrees
in triangulation outperforms the standard triangulation method for all language
pairs and achieves higher or almost equal scores than proposed exact matching
method. The exact matching method also outperforms the standard triangulation
method in the majority of the language pairs, but has a lesser improvement than
partial matching method. Sequential pivot translation is uniformly weak than all

the triangulation methods as shown in the previous research and Chapter 4.

Effect on coverage: In Table 5.2 we show the comparison of coverage of each
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Number of source-side unique phrases/words
Source | Target - - -

Tri. TreeExact Tri. TreePartial

Es 2.580M / 5,072 2.646M / 5,077

Ar Fr 2.589M / 5,067 2.658M / 5,071
Ru 2.347M / 5,085 2.406M / 5,088

Zh 2.324M / 5,034 2.386M / 5,040

Ar 1.942M / 5,182 2.013M / 5,188

Ee Fr 2.062M / 5,205 2.129M / 5,210
Ru 1,978M / 5,191 2.037M / 5,197

Zh 1,920M / 5,175 1.986M / 5,180

Ar 2.176M / 5,310 2.233M / 5,316

Fr Es 2.302M / 5,337 2.366M / 5,342
Ru 2.203M / 5.311 2.266M / 5,318

Zh 2.162M / 5.313 2.215M / 5,321

Ar 2.437M / 5,637 2.505M / 5,644

Ru Es 2.478M / 5.677 2.536M / 5,682
Fr 2.479M / 5,661 2.531M / 5,665

Zh 2.466M / 5,682 2.515M / 5,688

Ar 1.480M / 9,428 1.556M / 9,474

7h Es 1.504M / 9,523 1.570M / 9,555
Fr 1.499M / 9,490 1,568M / 9,520

Ru 1.518M / 9,457 1.593M / 9,487

Table 5.2: Comparison of rule table coverage in proposed triangulation methods.

proposed triangulated method. From this table, we can see that the exact match-
ing method reduces several percent in number of unique phrases while the partial
matching method keeps the same coverage with surface-form matching. We can
consider that it is one of the reasons of the difference in improvement stability

between the partial and exact matching methods.

Noise reduction: The main motivation of using parse trees in the proposed
methods is to prevent inappropriate connection of phrase correspondences and
reduce the noises in rule table. To investigate how the syntactic matching meth-
ods success to remove noisy rules, we perform analysis of noise ratio. Noisy rules
must contain source and target phrases having no correspondence in meaning,
though we can not make a decision for all phrase pair candidates in rule tables.

Therefore we assume that directly trained TMs with source-target parallel corpus
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Noise Ratio in Triangulated Table [%)]
Source | Target — - - -
Tri. Hiero Tri. TreeExact Tri. TreePartial

Es 78.40 63.61 (-14.79) 68.51 (-9.88)

Ar Fr 81.39 67.31 (-14.08) 72.22 (-9.17)
Ru 81.87 69.23 (-12.64) 73.84 (-8.03)

Zh 75.70 63.06 (-12.64) 67.72 (-7.98)

Ar 80.03 64.97 (-15.06) 69.80 (-10.23)

Es Fr 81.55 65.30 (-16.26) 70.61 (-10.94)
Ru 81.45 68.02 (-13.43) 72.67 (-8.78)

Zh 74.05 61.60 (-12.45) 65.90 (-8.15)

Ar 81.77 67.69 (-14.08) 72.39 (-9.38)

Fr Es 80.94 64.94 (-16.00) 70.20 (-10.74)
Ru 82.77 69.84 (-12.93) 74.52 (-8.25)

Zh 76.14 64.29 (-11.85) 68.53 (-7.61)

Ar 82.15 70.15 (-12.00) 74.60 (-7.55)

Ru Es 79.80 67.16 (-12.64) 71.68 (-8.12)
Fr 82.41 70.10 (-12.31) 74.76 (-7.65)

Zh 76.07 64.31 (-11.76) 68.67 (-7.40)

Ar 80.05 66.90 (-13.15) 71.23 (-8.82)

7h Es 77.94 65.53 (-12.41) 69.70 (-8.24)
Fr 78.24 68.54 (-9.70) 72.51 (-5.73)

Ru 79.80 67.07 (-12.73) 71.27 (-8.53)

Table 5.3: Comparison of noise ratio in triangulated rule table

have fine approximation close to the ideal distribution of translation probability.
To compute the noise ratio noise(Ty.;|Ty) of triangulated rule table Tj,; with

directly trained table Ty;,., we define:

22 (57) e\ T € (E13)
X (s7)em,. ¢ (15)

noise (Tyi| Tair) = (5.9)

where ¢(%[5) is forward translation probability which can be considered as a most
important feature of rule table. In Table 5.3, we show the calculated noise ratio
of rule table for each triangulation method and language pair. This result shows
that although triangulated rule tables contain many noisy rules, the syntactic
matching methods indeed success to reduce them. Tri.TreeExact reduces up to
-16.26% of noisy rules, and Tri.TreePartial reduces up to -10.94%. The reason
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Distribution Error Rate (MAE / RMSE) [%)]
Source | Target — - - -
Tri. Hiero Tri. TreeExact Tri. TreePartial

Es 14.16 / 10.62 14.49 / 11.06 13.96 / 10.56

Ar Fr 13.01 / 9.72 13.52 / 10.19 12.90 / 9.65
Ru 12.64 / 9.51 12.33 / 9.24 12.03 / 8.97

Zh 15.88 / 11.96 13.69 / 10.42 13.81 / 10.42

Ar 13.90 / 10.29 13.84 / 10.30 13.44 / 9.92

Es Fr 13.39 / 10.61 14.51 / 11.30 13.95 / 10.89
Ru 12.81 / 9.71 12.92 / 9.70 12.52 / 9.38

Zh 16.02 / 12.09 13.94 / 10.69 14.01 / 10.64

Ar 13.40 / 9.98 13.10 / 9.76 12.70 / 9.38

Fr Es 14.25 / 11.38 14.39 / 11.29 14.05 / 11.03
Ru 12.58 / 9.58 12.46 / 9.37 11.98 / 8.99

Zh 15.45 / 11.74 13.34 / 10.28 13.40 / 10.23

Ar 12.68 / 9.35 12.36 / 9.16 11.98 / 8.79

Ru Es 13.27 / 10.05 13.68 / 10.54 13.12 / 10.00
Fr 12.29 / 9.28 12.84 / 9.78 12.13 / 9.17

Zh 15.34 / 11.72 13.13 / 10.10 13.25 / 10.11

Ar 12.57 / 9.11 12.86 / 9.39 12.57 / 9.09

7h Es 13.25 / 9.78 13.58 / 10.16 13.22 / 9.79
Fr 12.86 / 9.49 12.67 / 9.44 12.25 / 9.07

Ru 12.22 / 9.14 12.40 / 9.31 12.12 / 9.03

Table 5.4: Comparison of distribution error rate in triangulated rule table

why the noise reduction rate at Tri. TreePartial is smaller than Tri.TreePartial that
Tri. TreePartial weakens the influence of noisy rules instead of removing them to

keep the coverage.

Improvement of probability estimation: Although we see that syntactic
matching methods help to reduce noisy rules, there is no guarantee that they can
improve the estimation of translation probabilities. In Table 5.4, we show mean
absolute error (MAE) and root mean square error (RMSE) for the distribution
of forward translation probability scores of triangulated rule tables with directly
trained rule tables. To calculate MAE and RMSE, we ignore the noisy rules which
are not contained in directly trained rule tables, to separate different factors.
From the result, we can see that Tri. TreePartial reduces MAE and RMSE, namely
On the

makes the distribution closer to the ideal, in almost language pairs.
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other hand, Tri.TreeExact does not stably reduce them. It may be induced by
the fact that the restricted matching condition of Tri. TreeExact excludes many
unmatched phrase pair candidates and remove even translation rules which are
not noisy. Therefore, we can consider that soften restriction of matching condition

helps also to improve the estimation of translation probabilities.

Qualitative analysis: We show an example of a translated sentences for which

pivot-side ambiguity is resolved in the syntactic matching methods:

Source Sentence in French:

La Suisse encourage tous les Etats parties & soutenir le travail conceptuel
ue fait actuellement le Secrétariat .

Corresponding Sentence in English:
Switzerland encourages all parties to support the current conceptual work

of the secretariat.

Reference in Spanish:

Suiza alienta a todos los Estados partes a_que apoyen la actual labor
conceptual de la Secretaria .

Direct:
Suiza alienta a todos los Estados partes a que apoyen el trabajo conceptual

que se examinan en la Secretaria . (BLEU+1: 55.99)

Tri. Hiero:

Suiza conceptuales para apovar la labor que en estos momentos la Secretaria
alienta a todos los Estados Partes . (BLEU41: 29.74)

Tri. TreeExact:
Suiza alienta a todos los Estados Partes a apoyar la labor conceptual
que actualmente la Secretarfa . (BLEU-+1: 43.08)

Tri. TreePartial:
Suiza alienta a todos los Estados Partes a apoyar la labor conceptual
que actualmente la Secretarfa . (BLEU+1: 43.08)
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The results of Tri.TreeExact and Tri.TreePartial are same in this example.

Digest of the derivation process in Tri. Hiero is:

S = (Xo, Xo)
= (La Suisse Xy, Suiza Xi)
= (La Suisse Xy ., Suiza X3 .)
= ( La Suisse X3 partie Xy ., Suiza X4 X3 Partes >
= .

On the other hand, digest of the derivation process in Tri.TreeExact /Tri. TreePartial

is:
S = (Xo, Xo)
= (La Suisse X1, Suiza X1)
= (La Suisse encourage X2 X3, Suiza alienta a X2 Xs)
= (La Suisse encourage tous les X4 partie X3, Suiza alienta a todos X4 Partes X3>
= (La Suisse encourage tous les Etats partie X3, Suiza alienta a todos los Estados Partes X3)
= .

Here we can see that the derivation in Tri.Hiero uses rule X — (X, parties X7,
X1 X, Partes)? causing incorrect re-ordering of phrases followed by steps of in-
correct word selection.” On the other hand, derivation in Tri.TreeExact and
Tri. TreePartial uses rule X — (tous les Xy parties, todos X, Partes)® synthe-
sized from T2S rules with common pivot subtree (NP (DT all) (NP* XnNp
(NNS parties)). We can confirm that the derivation improves word-selection

and word-reordering by using this rule.

2The words emphasized with underline and wavy-underline in the example correspond to Xg
and X, respectively.

3For example, the word “conceptuales” with italic face in Tri.Hiero takes the wrong form and
position.

4The words emphasized in bold face in the example correspond to the rule.
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vocabulary size: 16k (shared)
source embedding size: 512
target embedding size: 512
output embedding size: 512
encoder hidden size: 512
decoder hidden size: 512
LSTM layers: 1
attention type: MLP
attention hidden size: 512
optimizer type: Adam
loss integration type: mean
batch size: 2048
max iteration: 200k
dropout rate: 0.3
decoder type: Luong+ 2015

Table 5.5: Main parameters of NMT training

5.3.3 Comparison with Neural MT:

Recent results (Firat et al.; 2016; Johnson et al.; 2017) have found that neural
machine translation systems can gain the ability to perform translation with zero
parallel resources by training on multiple sets of bilingual data. However, previous
work has not examined the competitiveness of these methods with pivot-based
symbolic SMT frameworks such as PBMT or Hiero. In this section, we compare
a zero-shot NMT model and other pivot NMT methods with our pivot-based
Hiero models. To train and evaluate NMT models, we adopt NMTKit.” Detailed
parameters to train NMT models are shown in Table 5.5.

We evaluate 4 additional translation methods:

Cascade NMT:
Sequential pivot translation with source-pivot and pivot-target NMTs (Sec-
tion 3.1.1).

Shttps://github.com/odashi/nmtkit
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BLEU Score [%)]
Source Direct  Direct Tri. Cascade Cascade Synthetic Zero-Shot

Target Hiero NMT | TreePartial Heiro NMT NMT NMT

Es 38.49  38.25 35.94 30.95 31.62 32.35 8.18

Fr 33.34 33.16 30.83 25.08 26.91 29.51 8.57

Ar Ru 24.63 27.00 24.15 18.70 21.67 21.81 5.79
Zh 27.27  30.04 25.07 21.77 23.70 25.63 5.04

Ar 27.18 26.02 24.45 22.72 21.21 23.01 5.22

Fr 43.24 41.83 40.12 35.40 31.84 36.57 15.04

Bs Ru 28.83  30.65 27.41 22.43 23.60 25.97 7.57
Zh 27.08  32.36 25.16 23.36 26.03 27.31 8.62

Ar 25.10 23.28 22.13 19.88 18.66 18.83 8.08

Es 45.20  44.49 41.99 37.75 32.93 36.78 14.37

br Ru 27.42 28.29 25.64 20.64 20.87 23.60 8.77
Zh 25.84 29.10 23.53 21.79 23.14 24.96 11.95

Ar 22.53 23.19 20.35 18.71 19.71 19.21 3.18

Es 37.60 38.67 35.62 31.33 31.25 31.22 10.42

Ru Fr 34.05 33.26 31.67 27.11 27.34 29.10 9.76
Zh 28.03 31.39 25.12 21.81 24.25 25.46 9.46

Ar 20.09 20.17 17.73 14.82 16.89 18.01 10.38

7h Es 30.66  32.69 28.05 23.15 26.01 27.80 6.13
Fr 25.97 27.68 24.35 19.55 23.35 25.46 7.12

Ru 21.16 23.17 19.59 14.79 18.40 20.53 3.21

Table 5.6: Comparison of SMT and NMT in multilingual translation tasks.

Synthetic NMT:
Generating pseudo-parallel corpus synthesized by translating pivot-side of

source-pivot parallel corpus with pivot-target NMT (Section 3.1.2).

Zero-Shot NMT:
Training single shared model with pvt <> {src,target} parallel data accord-
ing to Johnson ef al. (2017).

Direct NMT:
Translating with NMT directly trained on the source-target parallel corpus

without using pivot language (for comparison).

Training data for Cascade NMT, Synthetic NMT, and Zero-Shot NMT are same
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with Pivot Hiero methods (source-pivot and pivot-target corpora), and training
data for Direct NMT is same with Direct Hiero.

In Table 5.6, we show BLEU score of each translation task and language pair.
From the results we see the tendency of NMT that directly trained model achieves
high translation accuracy even for translation between languages of different fam-
ilies, on the other hand, the accuracy is drastically reduced in the situation when
there is no source-target parallel corpora for training. Among pivot and zero-shot
methods for NMT, Synthetic NMT achieves the highest score for almost language
pairs. The reason why Synthetic NMT outperforms Cascade NMT for the ma-
jority of language pairs, may be that multi-layer NNs have robustness for noisy
training data, and can optimize the trained model with fine-tuning technique. On
the other hand, for Cascade NMT, fine-tuning is available only for source-pivot
and pivot-target TMs separately and not for the whole pipelined system.

In our setting, while bilingually trained NMT systems were competitive or
outperformed Hiero-based models, zero-shot translation is uniformly weaker. This
may be because we used only single LSTM layer for each of encoder and decoder,
or because the amount of parallel corpora or language pairs were not sufficient.
Thus, we can posit that while zero-shot translation has demonstrated reasonable
results in some settings, successful zero-shot translation systems are far from
trivial to build, and pivot-based symbolic MT systems such as PBMT or Hiero

may still be a competitive alternative.

5.4 Summary

In this chapter, we have proposed a method of pivot translation using triangu-
lation with exact or partial matching method of pivot-side parse subtrees. In
experiments, we found that these triangulated models are effective in particular
when allowing partial matching. From the analysis, we confirmed that the syn-
tactic matching methods indeed help to reduce inappropriately connected rules
and specifically partial matching method can stably improve the estimation of

translation probabilities.
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6 Syntactic and Non-Redundant
Segment Selection for Active

Learning

In Section 3.2, we showed the representative segment selection methods and their
advantages and disadvantages, and mentioned problems of redundancy and frag-
mentation in segment selection phrase selection method using n-gram as shown
in Figure 6.1 (a). In this chapter, we propose two methods that aim to solve these
two problems and improve the efficiency and reliability of segment-based active
learning for SMT. For the problem of overlapping phrases, we note that by merg-
ing overlapping phrases, as shown in Figure 6.1 (b), we can reduce the number of
redundant words annotated and improve training efficiency. We adopt the idea of
mazximal substrings (Okanohara and 'I'sujii, 2009; Yamamoto and Church, 2001)
which both encode this idea of redundancy. For the problem of phrase structure
fragmentation, we propose a simple heuristic to count only well-formed syntactic

constituents in a parse tree, as shown in Figure 6.1 (c).

6.1 Compact and Syntactically Coherent

Segment Selection

In this section, we explain the two proposed methods to solve the problems of

redundancy and fragmentation and the combination method of them.
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(a) Conventional n-gram selection method (n = 4)

any one of the preceding claims
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(b) Proposed maximal phrase selection method
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(c¢) Proposed parse subtree selection method

Figure 6.1: Conventional and proposed data selection methods

6.1.1 Segment Selection based on Phrase Maximality

To solve both the problem of overlapping phrases and the problem of requiring
limits on phrase length for computational reasons, we propose a method using the
idea of mazimal substrings (Okanohara and 'I'sujii, 2009). Maximal substrings are
formally defined as “a substring that is not always included in a particular longer
substring.” For example, if we define p; as a phrase and occ(p;) as its occurrence

count in a corpus, and have the following data:

p1 = “one of the preceding”, occ(pr) = 200,000
p2 = “one of the preceding claims”, occ(ps) = 200,000
p3 = “any one of the preceding claims”, occ(ps) = 190,000
p1 = “one of the preceding” always co-occurs with the longer p, = “one of the

preceding claims” and thus is not a maximal substring. On the other hand, p,

does not always co-occur with ps, and thus py will be maximal. This relationship
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can be defined formally with the following semi-order relation:

$1 X 89 < Ja, B sy = asif A oce(sy) = oce(ss). (6.1)

W

Demonstrating this by the previous example, p; = ap.3, a = “7, § = “claims”
hold, meaning p; is a sub-sequence of py, and py is a sub-sequence of p3 in a
similar manner. Since p; is a sub-sequence of py and occ(p;) = oce(ps) = 200, 000,
p1 = po holds. However, although ps is a sub sequence of p3, because occ(ps) =
200, 000 # 190,000 = occ(ps), the relation ps < ps does not hold. Here, we say p
has maximality" if there does not exist any ¢ other than p itself that meets p < ¢,
and we call such a phrase a maximal phrase.

All the maximal phrases in the source language corpus with N words can be
efficiently enumerated with linear time O(N) by using enhanced suffix array (Ka-
sai et al., 2001). Since it is required to compare strings O(logN) times to obtain
occurrence count of each maximal phrase for binary search, it is required to com-
pare strings O(NlogN) times for all the maximal phrases (Okanohara and 'I'sujii,
2009). Since the number of maximal phrases to be extracted is at most N — 1, we
can adopt sorting algorithm of computational complexity O(NlogN) to enumer-
ate them in descending order by frequency. In actual implementation of maximal
phrase extraction, we exclude word strings containing newline characters, and
extract only those with occurrence counts of 2 or more. This is to prevent a
large number of word substrings including most sentences in the source language
corpus from being selected as the maximal phrase of occurrence count 1.

To apply this concept to active learning, our proposed method limits translation
data selection to only maximal phrases. This has two advantages. First, it reduces
overlapping phrases to only the maximal phrases, allowing translators to cover
multiple high-frequency phrases in the translation of a single segment. Second,
it removes the need to set arbitrary limits on the length of strings such as n =4
used in previous work.

However, it can be easily noticed that while in the previous example p, is
included in ps3, their occurrence counts are close but not equivalent, and thus both

are maximal phrases. In such a case, the naive implementation of this method

'Maximality is a term of algebra, and = € S is called mazimal element of a subset S C P of

some partially ordered set (P, <) if all y € S, x < y implies © = y.
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can not remove these redundant phrases, despite the fact that it is intuitively
preferable that the selection method combines phrases if they have almost the
same occurrence count. Thus, we also propose to use the following semi-order

relation generalized with parameter A:
51 2 So & da, B: sy =as1B AN oce(sy) < oce(ss) (6.2)

where A takes a real numbered value from 0 to 1. We redefine maximality using

this semi-order E as A-mazimality, and call maximal phrases defined with 2 A-
mazximal phrases in contrast to standard maximal phrases. We propose a segment
selection method in which we sequentially add highly frequent A-maximal phrases
uncovered in existing parallel corpus.

By setting the parameter A of A-maximal phrase selection to be smaller than
1, we can remove the restriction that the two segments under comparison be
of exactly equal counts, allowing them to have only approximately the same
occurrence count. As special cases, it is equivalent with standard maximal phrase
selection when A = 1 — € (e is a small positive number close to zero), and it
becomes a random selection of full-sentences when A = 0. In consideration of
the possibility that both advantages can be compatible, we set to A = 0.5, which
is an intermediate value between two special values, for comparison with other
methods in this research. By using A-maximal phrases with A = 0.5 instead of
standard maximal phrases, we can remove a large number of phrases that are
included in a particular longer phrase more than half the time, indicating that it
might be preferable to translate the longer phrase.

Since A-maximal phrases with A < 1 always satisfies the condition of stan-
dard maximal phrase, all candidates for A-maximal phrase in the source language

corpus can be searched among all standard maximal phrases.

6.1.2 Phrase Selection based on Parse Trees

In this section, we propose a second phrase selection method based on the results
from the syntactic analysis of source language data. This method first processes
all the source language data with a phrase structure parser, traverses and counts

up all the subtrees of parse trees as shown in Figure 6.2, and finally selects

65



NP
/;P
NP /EP
PN T

DT €D IN DT  JJ  NNS
|1

I
any one of the preceding claims
€«—> € >
OK OK

<

v

NG

Figure 6.2: Phrase selection based on parse trees

phrases corresponding to a subtree in frequency order. We propose this method
because we expect the selected phrases to have syntactically coherent meaning,
potentially making human translation easier than other methods that do not use
syntactic information. In this research, we aim to investigate the influence of
selected phrases on active learning efficiency, and thus we use parse trees only
for phrase extraction so that it is easier to compare with other phrase selection
methods.

Since the phrase selection methods based on n-gram or phrase maximality count
phrases as superficial sequences of words, for example if we have a phrase “are
proposed and discussed”, the methods count up also the sub sequence of words
“are proposed”, while the proposed method based on parse trees does not select
that because of fragmentation. Therefore, the occurrence counts by this syntactic
method tend to be lower than superficial phrase counting, and in consequence the
priority that phrases with length 2 or more words are selected tends to be lower
than single words.

It should be noted that because this method counts all subtrees, it is capable of
selecting overlapping phrases like the methods based on n-grams. Therefore we
also experiment with a method using together both subtrees and the A-maximal
phrases proposed in Section 6.1.1 to select both syntactic and non-redundant

segments.
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6.2 Simulation Experiment

6.2.1 Experimental Set-Up

To investigate the effects of the phrase selection methods proposed in Section
6.1, we first performed a simulation experiment in which we incrementally retrain
translation models and evaluate the accuracy after each step of data selection. In
this experiment, we chose English as a source language and French and Japanese
as target languages. To simulate a realistic active learning scenario, we started
from given parallel data in the general domain and sequentially added additional
source language data in a specific target domain. For the English-French trans-
lation task, we adopted the Europarl corpus”? (Koehn, 2005) from WMT2014% as
a base parallel data source and EMEA® ('Tiedemann, 2009), PatTR” (Waschle
and Riezler, 2012), and Wikipedia titles, used in the medical translation task, as
the target domain data. For the English-Japanese translation task, we adopted
the broad-coverage example sentence corpus provided with the Eijiro dictionary®
as general domain data, and the ASPEC’ (Nakazawa et al.; 2016) scientific pa-
per abstract corpus as the target domain data. For pre-processing, we tokenized
Japanese corpora using the KyTea word segmenter (Neubig et al., 2011) and fil-
tered out the lines of length over 60 from all the training parallel data to ensure
accuracy of parsing and alignment. We show the details of the parallel dataset
after pre-processing in Table 6.1.

For the machine translation framework, we used phrase-based SMT (Koehn
et al., 2003) with the Moses toolkit® (Koehn et al., 2007) as a decoder. To effi-
ciently re-train the models with new data, we adopted inc-giza-pp,” a specialized
version of GIZA++ word aligner (Och and Ney, 2003) supporting incremental
training, and the memory-mapped dynamic suffix array phrase tables (MMSAPT)

feature of Moses (Germann, 2014) for on-memory construction of phrase tables.

http:/ /www.statmt.org/europarl/
3http://statmt.org/wmt14/
4http://opus.lingfil.uu.se/EMEA.php
Shttp://www.cl.uni-heidelberg.de/statnlpgroup /pattr/
Shttp://eijiro.jp

Thttp://lotus.kuee kyoto-u.ac.jp/ASPEC/
S8http://www.statmt.org/moses
9https://github.com/akivajp/inc-giza-pp
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Lang Pair Domain Dataset Amount
1.89M Sent.
General (Base) Train En: 47.6M Words
Fr: 49.4M Words
En-Fr 15.5M Sent.
Medical Train En: 393M Words
Fr: 418M Words
(Target) Test 1000 Sent.
Dev 500 Sent.
414k Sent.
General (Base) Train En: 6.72M Words
Ja: 9.69M Words
En-Ja 1.87M Sent.
Scientific Train En: 46.4M Words
Ja: 57.6M Words
(Target) Test 1790 Sent.
Dev 1790 Sent.

Table 6.1: Details of parallel data

We train 5-gram models over the target side of all the general domain and target
domain data using KenLM (Heafield, 2011). For the tuning of decoding param-
eters, since it is not realistic to run MERT (Och, 2003) at each retraining step,
we tuned the parameters to maximize the BLEU-4 score (Papineni et al., 2002)
for the baseline system, and re-used the parameters thereafter. We compare the
following 8 segment selection methods, including 2 random selection methods, 2

conventional methods and 4 proposed methods:

sent-rand:

Select sentences randomly.

4gram-rand:
Select n-gram strings with length of up to 4 in random order.

sent-by-4gram-freq:
Select the sentence including the most frequent uncovered phrase with

length of up to 4 words (baseline 1, Section 3.2.2).
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4gram-freq:
Select the most frequent uncovered phrase with length of up to 4 words
(baseline 2, Section 3.2.3).

maxsubst-freq:
Select the most frequent uncovered maximal phrase (proposed, Section
6.1.1)

reduced-maxsubst-freq:
Select the most frequent uncovered A-phrase with A = 0.5 (proposed, Sec-
tion 6.1.1)

struct-freq:
Select the most frequent uncovered phrase extracted from the subtrees (pro-

posed, Section 6.1.2).

reduced-struct-freq:
Select the most frequent uncovered A-maximal phrase (A = 0.5) extracted

from the subtrees (proposed, Section 6.1.1 and Section 6.1.2).

To generate oracle translations, we used an SMT system trained on all of the
data in both the general and target-domain corpora. To generate parse trees, we
used the Ckylark parser (Oda et al., 2015).

6.2.2 Results and Discussion

Comparison of efficiency: From the results obtained by simulation experi-
ments, Table 6.2 shows the transition of BLEU scores for each method at the
10

time of adding no words, 10k words, 100k words, 1M words, and all segments.

The score at the time of adding all segments is considered to be the performance

10 BLEU score of the base system in English-Japanese translation started from a low value lower
than 10 because the domain-specific parallel sentences are extremely short. In the previous
research (Ananthakrishnan et al., 2010a,b; Bloodgood and Callison-Burch, 2010; Haffari et al.
2009), BLEU score is commonly used in domain adaptation with active learning from the
situation where the parallel sentences are insufficient. Therefore, we used the same evaluation

measure in this research.
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BLEU-4 Score [%)]
Lang Pair Selection Method No Addition | 10k Words 100k Words 1M Words | All Segments
sent-rand 25.57 25.72 27.35 30.02
4gram-rand 25.53 25.52 27.16 28.32
sent-by-4gram-freq 25.55 26.12 27.93 30.69
4gram-freq 25.61 26.16 27.89 28.75
En-Fr 25.39
maxsubst-freq 25.55 25.84 27.49 29.60
reduced-maxsubst-freq 25.63 26.10 27.91 29.81
struct-freq 25.85 26.86 29.06 30.03
reduced-struct-freq 1 26.08 t27.18 1 29.40 30.20
sent-rand 10.44 13.03 15.58 21.22
4gram-rand 10.57 13.37 17.61 19.71
sent-by-4gram-freq 11.14 14.49 17.66 21.06
4gram-freq 11.49 15.07 18.27 19.74
En-Ja 9.37
maxsubst-freq 11.72 15.13 18.58 19.88
reduced-maxsubst-freq 11.87 t15.72 18.71 19.59
struct-freq 12.02 15.44 18.61 19.97
reduced-struct-freq t12.27 15.66 1 18.91 19.83

Table 6.2: Transition of BLEU score according to the number of additional words.
Underlines indicate that the score is the maximum among the random
selection method and the baseline method at each point in time im-
mediately after the addition of 1M words. Bold face indicates the
scores the proposed method exceeding the underlined scores. Daggers

T indicate the best score in all the methods in each stage.

limit of each method, since this is the translation accuracy by using all the trans-
lated segments. However, since the number of source words to be added varies
significantly, comparison can not be made simply from the viewpoint of active
learning efficiency.

Comparing two random selection methods and the two baseline methods form
the table, the accuracy elongation with 4gram-freq is stably high until addition
of 100k words. Accordingly, we can confirm the advantages of selecting highly
frequent segments instead of whole sentences. However, at the time of addition
of 1M words in English-French translation, the score of 4gram-freq is lower than
sent-by-4gram-freq, and the score of 4gram-freq is lower than sent-by-4gram-freq
and sent-rand at the time of addition of all segments in both language pairs.

From this fact, it can be seen that in the case of adding a number of words
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Figure 6.3: BLEU score vs. number of additional source words in each method
(upper: En-Fr translation task, bottom: En-Ja translation task, left:
up to 100k additional words, right: up to 1M additional words)

more than a certain amount, active learning efficiency of 4gram-freq is lower than
sentence selection methods, and its performance limit is not high. It may because
the length of selected segments is limited to 4 words in 4gram-freq as mentioned
in Section 3.2.3, and the inability to learn correspondence of longer segments is
disadvantage in MT.

Next, we compare the proposed methods with the baseline methods. In the pro-
posed methods, reduced-maxsubst-freq is almost always higher than maxsubst-
freq, and reduced-struct-freq is almost always higher than struct-freq. Thereby,

it is considered that coverage is improved with fewer additional words by giving
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priority to longer segments based on A-maximality. Therefore, we compare the
two proposed methods based on A-maximality with two baseline methods in more
detail.

In Figure 6.3, we show the evaluation score results by the number of additional
source words up to 100k and 1M words. Additionally, we show the score of M'T
trained and evaluated using the whole data of the base corpus and the additional
corpus as an oracle score, together with the right-side graph of up to the 1M
additional words.

In reduced-maxsubst-freq, English-Japanese translation score was stably higher
than the baseline methods. However in English-French translation, it got almost
the same score as 4gram-freq up to the point of adding 1M words. However, since
the score at the time of adding all the segments in both language pairs greatly
exceeds 4gram-freq and 4gram-rand, the performance limit of this method is
high. This seems to be a major reason that the problem of the maximum phrase
length limitation as described above does not occur in the proposed methods.
To investigate the reason why there is no significant difference between reduced-
maxsubst-freq and 4gram-freq in English-French translation, we look over the
highly frequent segments selected by both methods. The most frequent uncovered
segments “according to claim” (1,502,455 times), “claim 17 (1,133,243 times),
“characterized in that” (858,404 times), etc. were commonly selected in the
two methods, and redundant segments as described in Section 3.2.3 were few,
but rather fragmentation of phrase structures was conspicuous. A state in which
multiple frequent 4-gram segments have many common word sub-sequence occurs
particularly when frequent segments including more than 4 words. It seems to
be because such frequent longer segments in the medical-domain corpus used
in this experiment does not contain much domain-specific expressions, and they
are already included in the large-scale general-domain corpus. On the other
hand, in English-Japanese translation, many duplicates are seen in such as highly
frequent segments “results suggest that” (6,352 times), “these results suggest”
(5,115 times), “these results suggest that” (4,791 times), etc. selected by 4gram-
freq. In this situation, reduced-maxsubst-freq can demonstrate higher learning
efficiency by combining such overlapping segments into one. In particular, since

the general-domain corpus used in English-Japanese translation is comparatively
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All Selected Segments First 10k Words
Average Average
Lang Pair Selection Method #Segments #Words Phrase Length | #Segments Segment Length
sent-by-4gram-freq 10.6M 269M 25.4 310 32.1
4gram-freq 40.1M 134M 3.34 3.62k 2.76
En-Fr maxsubst-freq 62.4M 331M 5.30 2.39k 4.17
reduced-maxsubst-freq 45.9M 246M 5.36 2.95k 3.39
struct-freq 14.1M 94.2M 6.68 4.01k 2.49
reduced-struct-freq 7.33M 41.3M 5.63 4.55k 2.20
sent-by-4gram-freq 1.28M 33.6M 26.3 560 17.8
4gram-freq 8.48M 26.0M 3.07 4.70k 2.13
En.Ja maxsubst-freq 7.29M 25.8M 3.54 4.51k 2.22
reduced-maxsubst-freq 6.06M 21.7TM 3.58 4.76k 2.10
struct-freq 1.45M 4.85M 3.34 6.64k 1.51
reduced-struct-freq 1.10M 3.33M 3.03 6.73k 1.49

Table 6.3: Number of segments and average words/segment in each method

small scale of 400k sentences which summarizes daily expressions, frequent long
segments in the scientific-domain corpus are not much covered.

In both language pairs, reduced-struct-freq almost stably achieves the highest
score among all the segment selection methods. Only at the time of adding 100k
words in English-Japanese translation, the score of reduced-maxsubst-freq is the
maximum, though it is a small difference with reduced-maxsubst-freq, and the
fluctuation range of the learning curve is large, so it seems to be within the error
range''. We can see that in English-French translation, the scores of reduced-
struct-freq and struct-freq based on parse trees grows more rapidly than other
methods and is significantly better even at the point of 1M additional words.
Besides in English-Japanese translation, the scores of these methods do not have
much difference with reduced-maxsubst-freq and 4gram-freq while the number
of additional words is small, but become higher than the other methods from
the point of adding about 40k words. From the point of adding 500k words in
English-Japanese translation, the score of each selection method becomes almost
flat.

1 'When we tested the statistically significant difference by bootstrap resampling method (Koehn,

2004), no significant difference of p < 0.1 was observed.

73



Length of selected phrases: Due to the different criteria used by each method,
there are also significant differences in the features of the selected phrases. In
Table 6.3, we show the details of the number of all selected phrases, words and
average phrase length until the stop condition, and at the point of 10k additional
source words. The coverage converges when all the selected segments are trans-
lated, and thus the less words the method selects finally, the more rapidly the
coverage converges and the translation accuracy may also improves. Whereas,
since longer phrase can cover more n-gram phrases at once, methods selecting
longer segments on the average have an advantage for improving 4-gram cover-
age. We see there is a big difference of average phrase length between 5.30-6.68
in English-French and 3.03-3.58 in English-Japanese, but this depends only on
the combination of source-side base and additional datasets and of course does
not depend on language pairs. Moreover, we can confirm that the average phrase
length at the point of 10k additional words in Table 6.3 is shorter than adding all
the candidates especially in methods based on parse trees. That is clear because
shorter phrases tend to be more frequent and selected earlier, still we see the
tendency that the frequency of longer syntactic phrases drastically decreases.
Here we see the tendency that the selection methods based on parse trees select
shorter phrases than other methods. This is caused by the fact that longer phrases
are only counted if they cover a syntactically defined phrases, and thus longer

substrings that do not form syntactic phrases are removed from consideration.

Effect on coverage: This difference in the features of the selected phrases also
affects how well they can cover new incoming test data. To demonstrate this,
in Table 6.4 we show the 1-gram and 4-gram coverage of the test dataset after
10k, 100k and 1M words have been selected. From the results, we can see that
the reduced-struct-freq method attains the highest 1-gram coverage, efficiently
covering unknown words. On the other hand, it is clear that methods selecting
longer phrases have an advantage for 4-gram coverage, and we see the highest 4-
gram coverage in the sent-by-4gram-freq method. In English-French translation,
there is no change in the top four digits of 4-gram coverage at the time of adding
10k words. Although, whether to select a long segment or a short segment causes
a trade-off relationship considering the effect on coverage, it was confirmed that

l-gram coverage and 4-gram coverage can be jointly improved by eliminating
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l-gram / 4-gram Coverage [%)]
Lang Pair Selection Method No Addition 10k Words 100k Words 1M Words
sent-rand 92.93 / 10.60 93.73 / 10.71 95.94 / 11.30
4gram-rand 92.95 / 10.60 93.99 / 10.60 96.42 / 10.64
sent-by-4gram-freq 92.95 /10.60  93.96 / 10.72  96.25 / 11.55
4gram-freq 92.92 / 10.60 94.46 / 10.66 96.60 / 11.16
En-Fr 92.72 / 10.60
maxsubst-freq 92.79 / 10.60 93.61 / 10.62 95.99 / 10.92
reduced-maxsubst-freq 92.92 / 10.60 94.38 / 10.66 96.55 / 11.13
struct-freq 93.63 / 10.60 96.15 / 10.65 97.84 / 11.28
reduced-struct-freq 94.02 / 10.60 96.38 / 10.69 98.00 / 11.38
sent-rand 94.81 / 5.63 95.99 / 6.59 97.54 / 10.06
4gram-rand 94.80 / 5.38 96.10 / 5.46 97.67 / 5.98
sent-by-4gram-freq 95.10 / 5.84 96.28 / 7.23 97.64 / 11.39
4gram-freq 95.64 / 5.97 96.87 / 7.14 97.97 / 10.43
En-Ja 94.36 / 5.38
maxsubst-freq 95.59 / 5.96 96.83 / 7.07 97.91 / 10.20
reduced-maxsubst-freq 95.73 / 6.00 96.97 / 7.19 98.00/10.57
struct-freq 96.60 / 5.44 97.80 / 5.79 98.58 / 7.02
reduced-struct-freq 96.64 / 5.44 97.84 / 5.80 98.61 / 7.14
Table 6.4: Effect on coverage in each selection method (rounded off to the sec-

ond decimal place). Bold face indicates the highest coverage for each

number of additional words.

duplication based on A-maximality.

Reduction effect: In Section 3.2.3, as a matter of 4gram-freq, we mentioned
that there are many common word sub-sequences appearing duplicated among
selected segments, and to deal with this problem, we proposed selection method
based on A-maximality in Section 6.1.1. Table 6.5 summarizes the number and
percentage of words which are selected by 4gram-freq and reduced by combining
into longer segments with maxsubst-freq and reduced-struct-freq at the time of
adding 10k words, 100k words and 1M words. From the table, it can be seen
that in both language pairs, maxsubst-freq can reduce only a small amount of
1%-4%. As stated in Section 6.1.1, it is because standard phrase maximality has
severe restrictions that the occurrence counts of segments in inclusion relation are
equivalent, and thus many included word sub-sequences become maximal phrases.
On the other hand, in both language pairs, reduced-maxsubst-freq reduce words
by at least 24.70% up to 50.79%. From this results, it can be said that it is

possible to effectively reduce the number of included phrases by relaxing the
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Lang Pair Selection Method Number of Reduced Words (Reduction Ratio)
10k Add. Words 100k Add. Words 1M Add. Words
.. maxsubst-freq 92 (0.92%) 2,077 (2.11%) 34,917 (3.49%)
reduced-maxsubst-freq | 5,079 (50.79%) 42,622 (42.62%) 378,938 (37.89%)
En-Ja maxsubst-freq 138 (1.38%) 686 (1.61%) 41,046 (4.10%)
reduced-maxsubst-freq | 2,560 (25.6%) 24,697 (24.70%) 24,697 (24.70%)

Table 6.5: Reduction amount of duplicated segments selected in 4gram-freq

( Phrase to be translated:

The morphologies using scanning electron
microscopy ( SEM ) were studied .

Translation input form:

| EERET IS (SEM)

Confidence level:
@ 3: sure about the translation
(O 2: not so sure about the translation
(O 1:notsure at all

&

Figure 6.4: Example of the human translation interface

matching condition of occurrence counts of word sequences.

6.3 Manual Translation Experiment

6.3.1 Experimental Set-Up

To confirm that the results from the simulation in the previous section carry over
to actual translators, we further performed experiments in which professional
translators translated the selected segments. This also allowed us to examine the
actual amount of time required to perform translation, and how confident the
translators were in their translations.

We designed a web user interface as shown in Figure 6.4, and outsourced to
an external organization that had three professional translators translate the
shown phrases. As is standard when hiring translators, we paid a fixed price
per word translated for all of the methods. Because showing only the can-

didate phrase out of context could cause difficulty in translation, we followed
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Figure 6.5: Transition of BLEU score vs. additional source words (left) and vs.

cumulative working duration (right)

Bloodgood and Callison-Burch (2010) in showing a sentence including the se-
lected phrase,'” highlighting the phrase, and requesting to translate the high-
lighted part. We also requested every worker to select from 3 levels indicating
how confident they were of their translation. In the background, the time re-
quired to complete the translation was measured from when the new phrase was
shown until when the translation was submitted.

The methods selected for comparative evaluation are sentence selection based
on 4-gram frequency (sent-by-4gram-freq) and phrase selection based on 4-gram
frequency (4gram-freq) as baseline methods, and the phrase selection based on
both parse trees and Ad-maximality (reduced-struct-freq) as the proposed method.
For each method we collected translations of 10k source words, alternating be-
tween segments selected by each method to prevent bias.

We used the same dataset as the English-Japanese translation task and the
same tools in the simulation experiment (Section 6.2). However, for training
target language models, we interpolated one trained with the base data and a
second trained with collected data by using SRILM (Stolcke, 2002) because the
hand-made data set was too small to train a full language model using only

this data'?. We tuned the interpolation coefficient such that it maximizes the

128pecifically, we selected the shortest sentence including the phrase in the source corpus.
13 Let Pr(e) be the occurrence probability of sentence e in language model L, then the occurrence
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. Total Working Time | Average Confidence Level | Percentage of Confidence Level
Selection Method
[Hours] (3 Levels) Skipped |Level 1|Level 2| Level 3
sent-by-4gram-freq 25.22 2.689 1.77% | 0.00% |30.74% | 69.08%
4gram-freq 32.70 2.601 0.53% | 1.69% [35.48% | 62.29%
reduced-struct-freq 59.97 2.771 0.52% | 1.51% [18.82%|79.15%

Table 6.6: Total working time and statistics of confidence level evaluation

perplexity for the tuning dataset.

6.3.2 Results and Discussion

Efficiency results: Figure 6.5 shows the evaluation scores of SMT systems
trained using varying amounts of collected phrases. In the left graph, we see the
proposed method based on parse trees and phrase A-maximality rapidly improves
BLEU score, and requires fewer additional words than the conventional methods.
Because the cost paid for translation often is decided by the number of words,
this indicates that the proposed method has better cost performance in these
situations. The right graph shows improvement by the amount of translation
time. These results here are different, showing the 4-gram-freq baseline slightly
superior. As discussed in Table 6.4, the methods based on parse trees select
more uncovered l-grams, namely unknown words, and specifically the proposed

method selected more technical terms that took a longer time to translate.

Working time and confidence: We show the total time to collect the trans-
lations of 10k source words and statistics of confidence level for each method in
Table 6.6. The total working time for the proposed method is nearly double that
of other methods, and the tendency to focus on selecting uncovered technical
terms as described above can been confirmed. This tendency is seen also by

that the number of selected single words is nearly four times that of 4gram-freq,

probability in interpolated language model Lo from L; and Ly is Pr, ,(e) = aPr, (e) + (1 —
a) Py, (e). Interpolation coeflicient « takes a range from 0 to 1, and is adjusted with respect to

ZeeEdev ZOQPL1+2(E)>

the development data Fge, to minimize PPL(Eg.,) = exp ( o]
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Number of Segments

Selection Method |1 Word 2 Words 3 Words 4 Words |5+ Words | Total
sent-by-4gram-freq - - - - 565 566

4gram-freq 1,185 2,061 1,045 390 0 4,681
reduced-struct-freq| 4,688 1,038 884 96 38 6,744

Table 6.7: Detail of selected segments by length

Average Working Time [Seconds]
Selection Method 1 Word 2 Words 3 Words 4 Words 54 Words

sent-by-4gram-freq - - - - 160.64
4gram-freq 30.14 24.76 21.77 21.12 -
reduced-struct-freq 35.61 25.23 21.72 28.13 22.82

Table 6.8: Average working time of manual translation corresponding to segment

length

and the total number of selected segments is also large, as shown in Table 6.7.
On the other hand, the segments selected by the proposed method were given
the highest confidence level, receiving the maximum value of 3 for about 79% of
phrase pairs, indicating that the generated parallel data is of high quality. To
some extent, this corroborates our hypothesis that the more syntactic phrases
selected by the proposed method are easier to translate.

We can also examine the tendency of working time for segments of different
lengths in Table 6.8. Interestingly, single words consistently have a longer average
translation time than phrases of length 2-4, likely because they tend to be tech-
nical terms that require looking up in a dictionary. In addition, since these are
the average time required for translation of single segment, substantial average
time cost for single word translation is more than double the word translation
time of segments with 2 words, we can see how expensive the cost of translating
technical terms.

We show the average confidence levels corresponding to phrase length in Table
6.9. The confidence level of single words in the proposed method is lower than

in the baseline method, likely because the baseline selects a smaller amount of
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Average Confidence Level (3 Levels)
Selection Method 1 Word 2 Words 3 Words 4 Words 5+ Words

sent-by-4gram-freq - - - - 2.689
4gram-freq 2.885 2.585 2.422 2.300 -
reduced-struct-freq 2.802 2.796 2.778 2.708 2.737

Table 6.9: Average confidence level of manual translation corresponding to phrase
length

BLEU Score [%]
Selection Methods Confidence Confidence Confidence

1+ (Al 24 3
sent-by-4gram-freq 9.88 9.92 9.85
4gram-freq 10.48 10.54 10.36
reduced-struct-freq 10.70 10.72 10.67

Table 6.10: BLEU score when training on phrases with a certain confidence level

single words, and those selected are less likely to be technical terms. On the other
hand, we can confirm that the confidence level for longer phrases in the baseline
method decreases drastically, while it is stably high in our method, confirming

the effectiveness of selecting syntactically coherent phrases.

Translation accuracy by confidence level: Finally, we show the accuracy
of the SMT system trained by all the collected data in each method in Table
6.10. To utilize the confidence level annotation, we tested SMT systems trained
by phrase pairs with confidence levels higher than 2 or 3. From the results, the
accuracy of every method is improved when phrases pairs with confidence level 1
were filtered out. In contrast, the accuracy is conversely degraded if we use only
phrase pairs with confidence level 3. The translation accuracy of 9.37% BLEU
with the base SMT system without additional data became 10.72% after adding
phrase pairs having confidence level 2 or higher, allowing for a relatively large
gain of 1.35 BLEU points.
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6.4 Summary

In this chapter, we proposed a new method for active learning in machine trans-
lation that selects syntactic, non-redundant phrases using parse trees and \-
maximal phrases. We first performed simulation experiments and obtained im-
provements in translation accuracy with fewer additional words. Further manual
translation experiments also demonstrated that our method allows for greater

improvements in accuracy and translator confidence.
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7 Conclusion

7.1 Contribution

In SMT and NMT, it has been observed that translation with models trained
on larger parallel corpora can achieve higher accuracy, and usually millions of
sentence pairs are required in order to produce a high quality translation system.
Unfortunately, readily available parallel corpora are limited for most language
pairs, particularly those that do not include English, having few sentence pairs,
or none at all.

In this thesis, we focused on the low-resource data scenario for MT, in which
the size of the bilingual corpus is known to be limited. Specifically, our methods
addressed to improve MT quality with two types of common approaches for cop-
ing with the scarceness of bilingual corpus: (1) pivot translation and (2) active
learning for MT. Indeed, as we have demonstrated, MT quality could significantly
benefit from syntactic and contextual information when faced with limited train-

ing data.

Contextual Disambiguation with Pivot-Side Language Models:

In Chapter 4, we proposed a new method in pivot translation to resolve pivot-
side contextual ambiguity. This proposed method lets MT models remember the
information of the pivot phrase. This information can help to select appropri-
ate translation rules considering pivot-side context with pivot language models.
Experimental results on multilingual translation showed significant improvement
of MT evaluation scores for all the tested language pairs with relatively small
indirectly parallel corpora, of 100k sentence pairs, and large English monolingual
corpus as an additional resource. This method is effective in the case that avail-
able source-pivot and pivot-target parallel corpora are not large and while the

amount of available pivot monolingual corpus is large.
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Syntactic Disambiguation with Pivot-Side Parse Trees:

In Chapter 5, we proposed a new method in pivot translation to resolve the
pivot-side syntactic ambiguity. This proposed method introduces an explicitly
syntax-aware matching condition to find correct correspondences between source-
pivot and pivot-target translation rules, and can produce more reliable models.
Experimental results on multilingual translation showed significant improvements
of MT evaluation scores for all the tested language pairs with larger indirectly
parallel corpora than Chapter 4, of 1M sentence pairs, and results of English syn-
tactic parsing as an additional resource. A syntactic matching method allowing
partial matching successfully reduced the number of noisy translation rules and
improved the estimation of translation probabilities causing better translation
accuracy. This method is effective in the case that accurate syntactic parsers for
the pivot language are available, and practical to use for pivot translation with

larger amounts of parallel corpora.

Cost Reduction and Quality Improvement in Human Translation:

In Chapter 6, we proposed a new method in active learning for SMT to intro-
duce new criteria for segment selection, based on non-redundancy and syntactic
coherence. This proposed method provides a more compact and human-friendly
annotation task than conventional methods, resulting in a higher quality par-
allel corpus with lower annotation cost. Experimental results on multilingual
translation showed a significant improvement in all the tested language pairs.
Experiments using both simulation and extensive manual translation by profes-
sional translators find the proposed method effective, achieving both greater gain
of translation score for the same number of translated words, and allowing trans-

lators to be more confident in their translations.

7.2 Future Directions

Here, we list directions for future work in low-resource MT.

Pivot Translation Preserving Linguistic Information:
The proposed method in pivot translation in Chapter 4 uses MSCFG models

that have potential to various information of source, target, and pivot languages.
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For example, we should be able to combine the proposed methods in Chapters
4-5 and let to MSCFG model to remember the pivot tree structures.

As a more advanced method, it should be possible to devise compounded
MSCFG models that can store not only pivot-side syntactic information but also
source-side syntactic information, thereby realizing translation with higher re-
producibility of source information. We mentioned that pivot translation has the
problem of losing source language information, affected by the expressiveness of
pivot language. In fact, this problem often occurs not only for MT, but also for
human translators. For example, since modern English is known for its simple
morphology which has no complicated grammatical conjugation such as personal
suffixes, linguistic modality such as number, case, gender, etc. This information
is lost when translating into English, resulting that translation from English into
another language is different from the original meaning. In this method, we aim to
achieve translation that preserves originally linguistic information by combining

with pivot-side syntactic structures.

Active Learning for Pivot MT:

In many cases, pivot translation approach may solve the scarceness problem
of bilingual corpora for many language pairs that have sufficient amount of in-
directly parallel corpus with English. However, pivot translation alone has poor
performance or no effect at all for truly low-resourced language pairs that have no
suitable candidate to be a pivot with a significantly large parallel corpus. In such
a case, an active learning approach should have a synergy with pivot translation,
and be able to be used to efficiently supplement a shortage in data that can be
used in pivot translation. Therefore, it is important to combine the approaches
of pivot translation and active learning to provide a realistic solution in low-
resource scenarios. It is natural that source-pivot, pivot-target and source-target
language pairs have different annotation costs thereby optimization will become

more complicated. Tackling this is an interesting problem.

Toward Multilinguality and Multimodality:
In recent years, research on NMT to utilize multiple available training data
such as multi-source NMT (Zoph and Knight, 2016) and multimodal NMT (Spe-

cia et al., 2016) has become active and diversified. The previous work has demon-
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strated the capability of multi-layer NNs to jointly train shared models. One final
challenge for the future is to design an ecosystem of NNs by combining pivot MT
and active learning with multi-source NMT. As mentioned previously, even today,
many language pairs do not have a sufficient amount of parallel data, though this
thesis demonstrates that we can efficiently grow the parallel corpus by applying
active learning methods. Of course, the obtained parallel corpus can be used for
training a single M'T model or applying pivot translation in a straightforward
manner. However, NMT models should be capable of reusing human annotation
results as an additional source, and reuse even their own output. In this idea,
the model will be able to train itself by feeding not only a regular parallel corpus,
also from human translation results, output of other MT systems or of itself,
and other possible resources such as different kind of human annotation or other
language data. By applying this idea, the model can assist a human translator in
such a manner of post-editing, and immediately adapt itself with the result, and
even will be capable of automatic post-editing, resulting a substantial reduction

of translation cost.

85



Bibliography

Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard, and Prem
Natarajan. A Semi-Supervised Batch-Mode Active Learning Strategy for Im-
proved Statistical Machine Translation. In Proc. CoNLL, pages 126134, 2010a.

Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard, and Prem

Natarajan. Discriminative Sample Selection for Statistical Machine Transla-
tion. In Proc. EMNLP, pages 626-635, 2010b.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. In Proc. ICLR, pages 1-15,
2015.

Michael Bloodgood and Chris Callison-Burch. Bucking the Trend: Large-Scale
Cost-Focused Active Learning for Statistical Machine Translation. In Proc.
ACL, pages 854-864, 2010.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean.
Large language models in machine translation. In Proc. EMNLP, pages 858
867, 2007.

Peter F. Brown, Vincent J.Della Pietra, Stephen A. Della Pietra, and Robert L.
Mercer. The Mathematics of Statistical Machine Translation: Parameter Esti-
mation. Computational Linguistics, 19:263-312, 1993.

Jean-Cédric Chappelier, Martin Rajman, et al. A Generalized CYK Algorithm for
Parsing Stochastic CFG. In Proc. TAPD, volume 98, pages 133-137. Citeseer,
1998.

Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing Tech-
niques for Language Modeling. In Proc. ACL, pages 310-318, 1996.

86



David Chiang. Hierarchical Phrase-Based Translation. Computational Linguis-
tics, 33(2):201-228, 2007.

Trevor Cohn and Mirella Lapata. Machine Translation by Triangulation: Making
Effective Use of Multi-Parallel Corpora. In Proc. ACL, pages 728-735, 2007.

Raj Dabre, Fabien Cromieres, Sadao Kurohashi, and Pushpak Bhattacharyya.
Leveraging Small Multilingual Corpora for SMT Using Many Pivot Languages.
In Proc. NAACL, pages 1192-1202, 2015.

Adria de Gispert and José B. Marino. Catalan-English Statistical Machine Trans-
lation without Parallel Corpus: Bridging through Spanish. In Proc. of LREC
5th Workshop on Strategies for developing machine translation for minority

languages, pages 65-68, 2006.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-Task
Learning for Multiple Language Translation. In Proc. ACL, pages 1723-1732,
2015.

Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin. Fast, Easy, and Cheap:
Construction of Statistical Machine Translation Models with MapReduce. In
Proc. WMT, pages 199-207, 2008.

Matthias Eck, Stephan Vogel, and Alex Waibel. Low Cost Portability for Statis-
tical Machine Translation based in N-gram Frequency and TF-IDF. In Proc.
IWSLT, pages 61-67, 2005.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan, Fatos T. Yarman Vural,
and Kyunghyun Cho. Zero-Resource Translation with Multi-Lingual Neural
Machine Translation. In Proc. EMNLP, pages 268-277, 2016.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a
Translation Rule? In Proc. NAACL, pages 273280, 2004.

Ulrich Germann. Building a statistical machine translation system from scratch:
how much bang for the buck can we expect? In Proc. of the workshop on

Data-driven methods in machine translation- Volume 14, pages 1-8, 2001.

87



Ulrich Germann. Dynamic phrase tables for machine translation in an interac-
tive post-editing scenario. In Proc. AMTA 2014 Workshop on Interactive and
Adaptive Machine Translation, pages 20-31, 2014.

Jestus Gonzélez-Rubio, Daniel Ortiz-Martinez, and Francisco Casacuberta. Active
learning for interactive machine translation. In Proc. EACL, pages 245254,
2012.

Isao Goto, Masao Utiyama, Eiichiro Sumita, Akihiro Tamura, and Sadao Kuro-
hashi. Distortion Model Considering Rich Context for Statistical Machine
Translation. In Proc. ACL, pages 155-165, 2013.

Jonathan Graehl and Kevin Knight. Training Tree Transducers. In Proc. NAACL,
pages 105-112, 2004.

Spence Green, Sida I. Wang, Jason Chuang, Jeffrey Heer, Sebastian Schuster, and
Christopher D. Manning. Human Effort and Machine Learnability in Computer
Aided Translation. In Proc. EMNLP, pages 1225-1236, 2014.

Gholamreza Haffari and Anoop Sarkar. Active Learning for Multilingual Statis-
tical Machine Translation. In Proc. ACL, pages 181-189, 2009.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar. Active Learning for Sta-
tistical Phrase-based Machine Translation. In Proc. NAACL, pages 415423,
2009.

Kenneth Heafield. KenLM: Faster and Smaller Language Model Queries. In Proc,
WMT, pages 187-197, 2011.

Eduard Hovy. Combining and Standardizing Large-Scale, Practical Ontologies
for Machine Translation and Other Uses. In Proc. LREC, pages 535—-542, 1998.

Ann Irvine and Chris Callison-Burch. Combining Bilingual and Comparable Cor-
pora for Low Resource Machine Translation. In Proc. of the Fighth Workshop
on Statistical Machine Translation, pages 262-270, August 2013.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernand a Vi 79 gas, Martin Wattenberg, Greg Corrado,

38



Macduff Hughes, and Jeffrey Dean. Google’s Multilingual Neural Machine
Translation System: Enabling Zero-Shot Translation. TACL, 5:339-351, 2017.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.
Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
Applications. In Proc. CPM, pages 181-192, 2001.

Philip N. Klein. Computing the Edit-Distance Between Unrooted Ordered Trees.
In Proc. of European Symposium on Algorithms, pages 91-102, 1998.

Philipp Koehn. Statistical Significance Tests for Machine Translation Evaluation.
In Dekang Lin and Dekai Wu, editors, Proc. EMNLP, pages 388-395, July 2004.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.
In MT summit, volume 5, pages 79-86, 2005.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan
Herbst. Moses: Open Source Toolkit for Statistical Machine Translation. In
Proc. ACL, pages 177-180, 2007.

Phillip Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-Based
Translation. In Proc. NAACL, pages 48-54, 2003.

Tomer Levinboim and David Chiang. Supervised Phrase Table Triangulation
with Neural Word Embeddings for Low-Resource Languages. In Proc. EMNLP,
pages 1079-1083, 2015.

Adam Lopez and Matt Post. Beyond bitext: Five open problems in machine
translation. In Proc. of the EMNLP Workshop on Twenty Years of Bitext,
2013.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches to
Attention-based Neural Machine Translation. In Proc. EMNLP, pages 1412—
1421, 2015.

89



Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in
Continuous Space Word Representations. In Proc. NAACL, pages 746751,
2013.

Akiva Miura, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Naka-
mura. Improving Pivot Translation by Remembering the Pivot. In Proc. ACL,
pages 573-577, 2015.

Akiva Miura, Graham Neubig, Michael Paul, and Satoshi Nakamura. Selecting
Syntactic, Non-redundant Segments in Active Learning for Machine Transla-
tion. In Proc. NAACL, pages 20-29, 2016.

Akiva Miura, Graham Neubig, Katsuhito Sudoh, and Satoshi Nakamura. Tree
as a Pivot: Syntactic Matching Methods in Pivot Translation. In Proc. WMT,
pages 90-98, September 2017.

Robert Munro. Crowdsourcing and the crisis-affected community. Information
Retrieval, 16(2):210-266, 2013.

Makoto Nagao. A framework of a Mechanical Translation between Japanese and
English by Analogy Principle. In Proc. International NATO Symposium on
Artificial and Human Intelligence, pages 173-180, 1984. ISBN 0-444-86545-4.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchimoto, Masao Utiyama, Ei-
ichiro Sumita, Sadao Kurohashi, and Hitoshi Isahara. ASPEC: Asian Scientific
Paper Excerpt Corpus. In Proc. LREC, pages 22042208, 2016.

Graham Neubig. Travatar: A Forest-to-String Machine Translation Engine based
on Tree Transducers. In Proc. ACL Demo Track, pages 91-96, 2013.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori. Pointwise Prediction for
Robust, Adaptable Japanese Morphological Analysis. In Proc. ACL, pages
529-533, 2011.

Graham Neubig, Philip Arthur, and Kevin Duh. Multi-Target Machine Transla-
tion with Multi-Synchronous Context-free Grammars. In Proc. NAACL, pages
484-491, 2015.

90



Sergei Nirenburg. Knowledge-based machine translation. Machine Translation,
4(1):5-24, 1989.

Franz Josef Och. Minimum Error Rate Training in Statistical Machine Transla-
tion. In Proc. ACL, pages 160-167, 2003.

Franz Josef Och and Hermann Ney. A Systematic Comparison of Various Statis-
tical Alignment Models. Computational Linguistics, 29(1):19-51, 2003.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Naka-
mura. Ckylark: A More Robust PCFG-LA Parser. In Proc. NAACL, pages
41-45, 2015,

Daisuke Okanohara and Jun’ichi Tsujii. Text Categorization with All Substring
Features. In Proc. SDM, pages 838-846, 2009.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
Method for Automatic Evaluation of Machine Translation. In Proc. ACL, pages
311-318, 2002.

Michael Paul, Hirofumi Yamamoto, Eiichiro Sumita, and Satoshi Nakamura. On
the Importance of Pivot Language Selection for Statistical Machine Transla-
tion. In Proc. NAACL, pages 221-224, 2009.

Philip Resnik and Noah A Smith. The web as a parallel corpus. Computational
Linguistics, 29(3):349-380, 2003.

Burr Settles and Mark Craven. An Analysis of Active Learning Strategies for
Sequence Labeling Tasks. In Proc. EMNLP, pages 1070-1079, 2008.

Claude E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27(3):379-423, 1948.

Lucia Specia, Stella Frank, Khalil Sima’an, and Desmond Elliott. A Shared Task
on Multimodal Machine Translation and Crosslingual Image Description. In
WMT, pages 543-553, 2016.

91



Matthias Sperber, Mirjam Simantzik, Graham Neubig, Satoshi Nakamura, and
Alex Waibel. Segmentation for Efficient Supervised Language Annotation with
an Explicit Cost-Utility Tradeoff. TACL, 2:169-180, 2014.

Andreas Stolcke. SRILM - an extensible language modeling toolkit. In Proc.
ICSLP, pages 901-904, 2002.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to Sequence Learning
with Neural Networks. In Advances in Neural Information Processing Systems,
pages 3104-3112, 2014.

Jorg Tiedemann. News from OPUS-A collection of multilingual parallel corpora
with tools and interfaces. In Proc. RANLP, volume 5, pages 237-248, 2009.

Katrin Tomanek and Udo Hahn. Semi-Supervised Active Learning for Sequence
Labeling. In Proc. ACL, pages 1039-1047, 2009.

Marco Turchi, Tijl De Bie, and Nello Cristianini. Learning performance of a
machine translation system: a statistical and computational analysis. In Proc.
WMT, pages 35-43, 2008.

Masao Utiyama and Hitoshi Isahara. A Comparison of Pivot Methods for Phrase-
Based Statistical Machine Translation. In Proc. NAACL, pages 484-491, 2007.

Bernard Vauquois. A Survey of Formal Grammars and Algorithms for Recogni-
tion and Transformation in Mechanical Translation. In Proc. IFIP Congress
(2), volume 68, pages 1114-1122, 1968.

Katharina Wéschle and Stefan Riezler. Analyzing Parallelism and Domain Simi-
larities in the MAREC Patent Corpus. Multidisciplinary Information Retrieval,
pages 12-27, 2012.

Mikio Yamamoto and Kenneth Ward Church. Using Suffix Arrays to Compute
Term Frequency and Document Frequency for All Substrings in a Corpus.
Computational Linguistics, 27(1):1-30, 2001.

Omar F Zaidan and Chris Callison-Burch. Crowdsourcing translation: Profes-

sional quality from non-professionals. In Proc. ACL, pages 1220-1229, 2011.

92



Xiaoning Zhu, Zhongjun He, Hua Wu, Conghui Zhu, Haifeng Wang, and Tiejun
Zhao. Improving Pivot-Based Statistical Machine Translation by Pivoting the
Co-occurrence Count of Phrase Pairs. In Proc. EMNLP, pages 1665-1675,
2014.

Michat Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. The United
Nations Parallel Corpus v1.0. In Proc. LREC, pages 3530-3534, 2016.

Barret Zoph and Kevin Knight. Multi-Source Neural Translation. In Proc.
NAACL, pages 30-34, June 2016.

93



Publication List

Refereed Domestic Journal Papers

1. =B, Graham Neubig, Sakriani Sakti, FHEE, FNE. RESEE
WxEEIRT 2Ry MIERFE BARASTEBAIE, Vol.23, No.5, pp499-528,
December 2016.

2. =JBPE), Graham Neubig, Michael Paul, F4&&. HMEN—EM C IER
EUZzEG L EWEBRO O DESFEFE BRASFHEUIE, Vol.24
No.3, pp463-489, June 2017.

Refereed International Conference Papers

1. Akiva Miura, Graham Neubig, Sakriani Sakti, Tomoki Toda, Satoshi Naka-
mura. Improving Pivot Translation by Remembering the Pivot. Proceed-

ings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics (ACL), July 2015.

2. Akiva Miura, Graham Neubig, Michael Paul, Satoshi Nakamura. Selecting
Syntactic, Non-redundant Segments in Active Learning for Machine Trans-
lation. Proceedings of the 15th Annual Meeting of the North American
Chapter of the Association for Computational Linguistics (NAACL), June
2016.

3. Akiva Miura, Graham Neubig, Katsuhito Sudoh, Satoshi Nakamura. Tree
as a Pivot: Syntactic Matching Methods in Pivot Translation. Proceedings
of the Second Conference on Machine Translation (WMT), September 2017.

94



International Workshop Papers

1. Raphael Shu, Akiva Miura. Residual Stacking of RNNs for Neural Machine
Translation. Proceedings of the 3rd Workshop on Asian Translation (WAT),
December 2016.

Domestic Conference Papers

1. =B, Graham Neubig, Sakriani Sakti, FHEE, #MNE. EEN T L
—IR=ZFRICB T B ER Y EIRRFEADIGA. BHRUWIEFRE 219
[BlBA S FBIEIZE S (SIG-NL), December 2014.

2. = APA), Graham Neubig, Sakriani Sakti, PHEE, AHE. HEEET
TILERBWIEERY FEIEROBER L. BRWIBFRE 222 0|HAEE
RLIBEAZES (SIG-NL), July 2015.

3. =J#PA, Graham Neubig, Michael Paul, FHHE. XA & A DA (S
EOHMEIERRO IO DB FE. BHRUIBEFRE 224 DIEHASHBUIE
Bfi3%% (SIG-NL), December 2015.

4. = #HBH)¥, Graham Neubig, Michael Paul, FAHE. #3I5HICE D < #
RO IO DEFFEF A AFERICL 25 SHEUIEFRE 22
[BIFERAL (NLP2016), March 2016.

5. =M, Graham Neubig, FMNE. AiEEZzFEKRIRC THER Y ~E)
RFZE. BRUIBFRE 227 B BASBUIEAZER (SIG-NL), July 2016.

Awards

1. Asia-Pacific Association for Machine Translation (AAMT), Nagao Award
Student Award, June 2016.

2. NAIST Top Scholarship Program for Excellent Academic Standing, July
2016.

Master’s Thesis
1. = BBK. PEEEETI/IL AV -ZSEBEREIROMBEMR . Master’s

thesis, Graduate School of Information Science, Nara Institute of Science
and Technology, March 2016.

95



	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Known Issues in Multilingual Machine Translation
	1.3 Approaches toward Low-Resource Machine Translation
	1.4 Thesis Scope
	1.4.1 Better Pivot Translation by Remembering the Pivot
	1.4.2 Syntactic Matching Methods in Pivot Translation
	1.4.3 Syntactic and Non-Redundant Segment Selection for Active Learning

	1.5 Document Structure

	2 Machine Translation Frameworks
	2.1 Statistical Machine Translation
	2.1.1 Translation Models
	2.1.2 Language Models
	2.1.3 Phrase-Based SMT
	2.1.4 Synchronous Context-Free Grammars
	2.1.5 Hierarchical Rules
	2.1.6 Explicitly Syntactic Rules
	2.1.7 Multi-Synchronous Context-Free Grammars

	2.2 Neural Machine Translation
	2.2.1 Encoder
	2.2.2 Attention Mechanism
	2.2.3 Decoder


	3 Low-Resource Machine Translation
	3.1 Pivot Translation
	3.1.1 Sequential Pivot Translation
	3.1.2 Pseudo-Parallel Corpus Synthesis
	3.1.3 Triangulation of Translation Models
	3.1.4 Problems of Pivot-Side Ambiguity
	3.1.5 Related Work

	3.2 Active Learning
	3.2.1 Active Learning for Machine Translation
	3.2.2 Sentence Selection using N-Gram Frequency
	3.2.3 Phrase Selection using N-Gram Frequency


	4 Contextual Disambiguation in Pivot Translation
	4.1 Word Sense Ambiguity
	4.2 Triangulation Remembering the Pivot
	4.3 Experiments
	4.3.1 Experimental Set-Up
	4.3.2 Results and Analysis
	4.3.3 Influence of Pivot Language Model Strength
	4.3.4 Qualitative Analysis

	4.4 Summary

	5 Syntactic Disambiguation in Pivot Translation
	5.1 Syntactic Ambiguity
	5.2 Triangulation with Syntactic Information
	5.2.1 Exact Matching of Parse Subtrees
	5.2.2 Partial Matching of Parse Subtrees

	5.3 Experiments
	5.3.1 Experimental Set-Up
	5.3.2 Results
	5.3.3 Comparison with Neural MT:

	5.4 Summary

	6 Syntactic and Non-Redundant Segment Selection for Active Learning
	6.1 Compact and Syntactically Coherent Segment Selection
	6.1.1 Segment Selection based on Phrase Maximality
	6.1.2 Phrase Selection based on Parse Trees

	6.2 Simulation Experiment
	6.2.1 Experimental Set-Up
	6.2.2 Results and Discussion

	6.3 Manual Translation Experiment
	6.3.1 Experimental Set-Up
	6.3.2 Results and Discussion

	6.4 Summary

	7 Conclusion
	7.1 Contribution
	7.2 Future Directions

	Bibliography
	Publication List

